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BIFURCATION ANALYSIS OF A SINGLE SPECIES

REACTION-DIFFUSION MODEL WITH NONLOCAL DELAY

Jun Zhou

Abstract. A reaction-diffusion model with spatiotemporal delay mod-

eling the dynamical behavior of a single species is investigated. The
parameter regions for the local stability, global stability and instability

of the unique positive constant steady state solution are derived. The
conditions of the occurrence of Turing (diffusion-driven) instability are

obtained. The existence of time-periodic solutions, the existence and

nonexistence of nonconstant positive steady state solutions are proved
by bifurcation method and energy method. Numerical simulations are

presented to verify and illustrate the theoretical results.

1. Introduction

In 1952, Alan Turing published a seminal paper “The chemical basis of
morphogenesis”[38]. His intriguing ideas influenced the thinking of theoretical
biologists and scientists from many fields, successfully developed on the the-
oretical backgrounds. The Turing mechanism has been used to describe the
structure changes of interacting species or reactants of ecology, chemical reac-
tion and gene formation in nature (see for example, [1,4–6,8–15,17–21,23,25–
29,31–36,40,42–47,49,51–57]).

In this paper, we investigate spatial, temporal and spatiotemporal patterns
of following single species reaction-diffusion model with nonlocal delay:

(1)



∂u
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− d∆u = ru

(
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)
, x ∈ Ω, t > 0,

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
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where Ω is a bounded and open domain in RN with N ≥ 1 is an integer, ν
is the unit outward normal on ∂Ω, and the homogeneous Neumann boundary
condition indicates that the predator-prey system is self-contained with zero
population flux across the boundary, a, b, c, d, r are positive parameters, u0(x) ∈
C1(Ω) is a nonnegative nontrivial function and satisfies ∂u0/∂ν = 0 on ∂Ω.
Model (1) can be regarded as the dynamical behavior of a single species with
effects of diffusion, aggregation, reproduction and competition for apace and
resources. The biology interpretations of the terms in model (1) are as follows.

• The term au is a measure of the advantage to individuals in aggregating
or grouping;
• The term −bu2 denotes competition for space (rather than resources),

which impedes population growth and stops the population density
from ever exceeding a certain value;

• The integral term of model is called spatiotemporal delay or nonlo-
cal effects in space and time, which reflects competition between the
individuals for food sources.

Model (1) with Ω = R2 was firstly proposed by Britton [2, 3], and they
demonstrated that there were three kinds of bifurcation solutions, i.e., steady
spatially periodic structure solutions, periodic standing wave solutions, and
periodic traveling wave solutions. These bifurcation solutions would lead to
the formation of spatiotemporal patterns, including uniform temporal oscilla-
tions, stationary spatially periodic patterns, standing waves and wave trains.
Recently, in [48], by using the multiple scale method, the authors considered
the conditions of both spot and stripe patterns.

Based on the above works, in this paper, we further study the spatial, tem-
poral and spatiotemporal patterns of the solutions to problem (1). For the
simplicities of our research, we let

(2) v(x, t) =

∫
Ω

1

4πt
e−

|x|2
4t

1

τ
e−

t
τ u(y, s)dyds,

and λ = 1/τ , then (1) can be transformed as the following system:

(3)



∂u

∂t
− d∆u = ru(1 + au− bu2 − cv), x ∈ Ω, t > 0,

∂v

∂t
−∆v = λ(u− v), x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.
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The state problem corresponding to (3) is the following semilinear elliptic
equations:

(4)


− d∆u = ru(1 + au− bu2 − cv), x ∈ Ω,

−∆v = λ(u− v), x ∈ Ω,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω.

Throughout this paper, we denote

(5) α =
a− c+

√
(a− c)2 + 4b

2b
,

then (3) possesses a unique constant equilibrium (u, v) = (α, α).
The remaining part of this paper is organized as follows. In Section 2, we

investigate the local stability, global stability and instability of the positive
equilibrium (α, α) and occurrence of Turing instability. In Section 3, we study
the existence of Hopf bifurcation. In Section 4, we consider the existence and
nonexistence of positive solutions for problem (4) by bifurcation theory and
energy method. In Section 5, we present some numerical simulations to verify
and illustrate the theoretical results. Throughout this paper, N is the set of
natural numbers and N0 = N∪ {0}. The eigenvalues of the operator −∆ with
homogeneous Neumann boundary condition in Ω are denoted by 0 = µ0 <
µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · · , and the eigenfunction corresponding to µn is φn(x).

2. Stability analysis

In this section, we consider the local and global asymptotic stability of unique
constant equilibrium (α, α) defined as (5). The local stability of (α, α) with
respect to (3) is determined by the following eigenvalue problem which is got
by linearizing the (4) about (α, α) and the fact bα2 = 1 + (a− c)α:

(6)


d∆φ+ r((2c− a)α− 2)φ− crαψ = µφ, x ∈ Ω,

∆ψ + λφ− λψ = µψ, x ∈ Ω,

∂φ

∂ν
=
∂ψ

∂ν
= 0, x ∈ ∂Ω.

Denote

(7) L(λ) =

(
d∆ + r((2c− a)α− 2) −crα

λ ∆− λ

)
.

For each n ∈ N0, we define a 2× 2 matrix

(8) Ln(λ) =

(
−dµn + r((2c− a)α− 2) −crα

λ −µn − λ

)
.

The following statements hold true by using Fourier decomposition

(1) If µ is an eigenvalue of (6), then there exists n ∈ N0 such that µ is an
eigenvalue of Ln(λ).
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R1

R2

R3

Figure 1. Illusion the stable and unstable regions in (α, c)-
plane, where R1 is the stable region, R3 is the unstable region,
and R2 the coexistence of stable and unstable region.

(2) The equilibrium (α, α) is locally asymptotically stable with respect
to (3) if and only if for every n ∈ N0, all eigenvalues of Ln(λ) have
negative real part, and it is unstable if there exists an n ∈ N0 such
that Ln(λ) has at least one eigenvalue with positive real part.

The characteristic equation of Ln(λ) is

(9) µ2 − Tn(λ)µ+Dn(λ) = 0,

where

Tn(λ) = −(d+ 1)µn + r((2c− a)α− 2)− λ,
Dn(λ) = dµ2

n + [dλ− r((2c− a)α− 2)]µn + λr(2 + (a− c)α).

Then (α, α) is locally asymptotically stable if Tn(λ) < 0 and Dn(λ) > 0 for
all n ∈ N0, and it is unstable if there exists n ∈ N0 such that Tn(λ) > 0 or
Dn(λ) < 0.

Obviously, if (2c − a)α ≤ 2, then Tn(λ) < 0 and Dn(λ) > 0 for all n ∈ N0.
That is (α, α) is locally asymptotically stable if (see R1 of Fig. 1)

(1) c ≤ a
2 ; or

(2) c > a
2 and α ≤ 2

2c−a .

If c > a and α > 2
c−a , we get D0(λ) < 0, so (α, α) is unstable (see R3 of

Fig. 1).
So in the following, we consider the case (see R2 of Fig. 1)

(10)
a

2
< c ≤ a and α >

2

2c− a
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or the case

(11) c > a and
2

2c− a
< α <

2

c− a
.

We define

λ0 = r((2c− a)α− 2) = crα−A > 0,(12)

T (λ, µ) = −(d+ 1)µ+ λ0 − λ,(13)

D(λ, µ) = dµ2 + (dλ− λ0)µ+ λA,(14)

and

H = {(λ, µ) ∈ (0,∞)× [0,∞) : T (λ, µ) = 0},
S = {(λ, µ) ∈ (0,∞)× [0,∞) : D(λ, µ) = 0},

where

(15) A = r(2 + (a− c)α),

which is positive if (10) or (11) holds. Then H is the Hopf bifurcation curve
and S is the steady state bifurcation curve. Furthermore, the sets H and S are
graphs of functions defined as follows

λH(µ) = −(d+ 1)µ+ λ0,(16)

λS(µ) =
λ0µ− dµ2

dµ+A
.(17)

Our next lemma is about the properties of λH(µ) and λS(µ). To give this
lemma, let’s firstly introduce some constants:

µ∗1 =

√
A2 +Aλ0 −A

d
∈
(

0,
λ0

d

)
,(18)

µ∗2 =
λ0

d+ 1
,(19)

µ∗3 =
λ0

d
,(20)

µH =
−[A(d+ 1)− dλ0 + λ0] +

√
[A(d+ 1)− dλ0 + λ0]2 + 4Ad2λ0

2d2
,(21)

D∗1 =
Aλ0√

A2 +Aλ0

,(22)

D∗2 =

√
1 +

λ0

A
− 1,(23)

D∗3 =
(
√
A+ λ0 −

√
A)2

λ0
< 1,(24)

D∗4 =
(
√
A+ λ0 +

√
A)2

λ0
> D∗3 ,(25)
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λ∗S = λS(µ∗1) =

(√
A2 +Aλ0 −A

)
(λ0 + 2A)−Aλ0

d
√
A2 +Aλ0

,(26)

λ∗H = λH(µ∗1) = λ0 −
d+ 1

d

(√
A2 +Aλ0 −A

)
,(27)

µL =
(1− d)λ0 − λ0

√
(d−D∗3)(d−D∗4)

2d
,(28)

µR =
(1− d)λ0 + λ0

√
(d−D∗3)(d−D∗4)

2d
.(29)

(a)

(1)
(2)

(3)

(b) (c)

(d) (e)

(1)

(1)

(2)(2)

(3) (3)

Figure 2. Illusion of Lemma 2.1. The curves are the graphs
of λS(µ) and the lines are graphs of λH(µ). (a) is the case
of D∗1 < d < 1; (b) is the case 1 = d > D∗1 ; (c) is the case
d > max{D∗1 , 1}; (d) is the case d1 = D∗1 ; (e) is the case
d1 < D∗1 . For all, the curves (1) represents λ∗S < λ0; the
curves (2) represent λ∗S = λ0; the curves (1) represent λ∗S > λ0

Lemma 2.1 (see Fig. 2). Suppose (10) or (11) holds. Then the functions
λH(µ) and λS(µ) admit the following properties:

(1) The function λH(µ) is strictly decreasing for µ ∈ (0,∞) and

λH(0) = λ0, λH(µ∗2) = 0, λH(µ) < 0 for µ > µ∗2, lim
µ→∞

λH(µ) = −∞.
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(2) µ = µ∗1 is the unique critical value of λS(µ), the function λS(µ) is
strictly increasing for µ ∈ (0, µ∗1), and it is strictly decreasing for µ ∈
(µ∗1,∞). Furthermore,

λS(0) = λS(µ∗3) = 0, max
µ∈[0,∞)

λS(µ) = λ∗S , lim
µ→∞

λS(µ) = −∞.

(3) λH(µ) and λS(µ) cross at the point (µH , λH(µH)) and λH(µ) > λS(µ)
for 0 ≤ µ < µH , λH(µ) < λS(µ) for µH < µ ≤ µ∗3.

(4) µ∗1 > µ∗2 if d < D∗1, µ∗1 = µ∗2 if d = D∗1, µ∗1 < µ∗2 if d > D∗1.
(5) µH < µ∗1 if and only if λ∗H < λ∗S if and only if d < 1; µH = µ∗1 if and

only if λ∗H = λ∗S if and only if d = 1; µH > µ∗1 if and only if λ∗H > λ∗S
if and only if d > 1.

(6) If d ≥ D∗2 or D∗3 < d < D∗2, then λ∗S < λ0; If D∗3 = d < D∗2, then
λ∗S = λ0; If d < D∗2 and d < D∗3, then λ∗S > λ0.

(7) If d < D∗2 and d < D∗3, then we have
(a) 0 < µL < µ∗1 < µR and λS(µL) = λ(µR) = 0,
(b) λS(µ) > λ0 for µ ∈ (µL, µR) and 0 < λS(µ) < λ0 for µ ∈ (0, µL)∪

(µR, µ
∗
3).

Based on the above analysis, we can give a stability/instability result re-
garding to the positive equilibrium (α, α) with respect to (3).

Theorem 2.2. Let λ0, D
∗
2 , D

∗
3 and λ∗S be the constants defined as (12), (23),

(24) and (26) respectively. Then (α, α) is locally asymptotically stable with
respect to (3) if

(1) c ≤ a
2 ; or

(2) c > a
2 and α ≤ 2

2c−a ; or

(3) (10) or (11) holds and λ > max{λ0, λ},
where

(30) λ = max
n∈N

λS(µn) ≤ λ∗S .

In particular λ > max{λ0, λ} holds if

λ > max{λ0, λ
∗
S} =

{
λ∗S , if d < min{D∗2 , D∗3};
λ0, otherwise.

The positive equilibrium (α, α) is unstable with respect to (3) if

(1) c > a and α > 2
c−a ; or

(2) (10) or (11) holds and λ < max{λ0, λ}.
Next we derive some conditions for the Turing instability with respect to the

positive equilibrium (α, α), which means (α, α) is locally asymptotically stable
with respect to the following local system

(31)


du

dt
= ru(1 + au− bu2 − cv), t > 0,

dv

dt
= λ(u− v), t > 0,
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but it is unstable with respect to (3). It is easy to see (α, α) is locally asymp-
totically stable with respect to (31) if λ > λ0. Then in view of Lemma 2.1 and
Theorem (2.2), we have

Theorem 2.3. Assume (10) or (11) holds. Then turing instability happens if

(1) d < min{D∗2 , D∗3} and
(2) there exists k ∈ N such that µk ∈ (µL, µR),

where D∗2 , D
∗
3 , µL, µR are given in (23), (24), (28) and (29) respectively.

Now we consider the global stability of (α, α) with respect to (3) by using
monotone iterative methods. Firstly, let’s introduce the following lemma (see
[41]):

Lemma 2.4. Assume f(s) ∈ C1([0,+∞)), κ > 0, ρ ≥ 0, T ∈ [0,+∞) are
constants, w ∈ C2,1(Ω×(T,+∞))∩C1,0(Ω̄× [T,+∞)) is positive. If w satisfies

∂w

∂t
− κ∆w ≤ (≥)w1+ρf(w)(γ − w), x ∈ Ω, t > T,

∂w

∂ν
= 0, x ∈ ∂Ω, t > T,

where γ > 0 is a constant, we have

lim sup
t→+∞

max
Ω̄

w(·, t) ≤ γ (lim inf
t→+∞

min
Ω̄
w(·, t) ≥ γ).

Theorem 2.5. If b > ac+ c2, then the positive constant equilibrium (α, α) is
globally asymptotically stable with respect to (3).

Proof. By the first equation of (3), we have

ut−d∆u ≤ ru(1+au−bu2) = bru

(
u− a−

√
a2 + 4b

2b

)(
a+
√
a2 + 4b

2b
− u

)
.

Then it follows from Lemma 2.4 that

(32) lim sup
t→∞

max
Ω

u(·, t) ≤ a+
√
a2 + 4b

2b
=: u1.

So for any ε > 0, there exists T ε1 � 1 such that

u(x, t) ≤ u1 + ε, x ∈ Ω, t ≥ T ε1 .
By the second equation of (3) and the above inequality, we get

vt −∆v ≤ (u1 + ε− v), x ∈ Ω, t ≥ T ε1 .
Then it follows Lemma 2.4 and the arbitrariness of ε that

(33) lim sup
t→∞

max
Ω

v(·, t) ≤ u1 =: v1.

Since b > ac + c2, there exists a constant ε0 > 0 such that c(v1 + ε) < 1 for
ε ∈ (0, ε0). For such ε, there exists T ε2 � 1 such that

v(x, t) ≤ v1 + ε, x ∈ Ω, t ≥ T ε2 .
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By the first equation of (3) and the above inequality, for x ∈ Ω and t ≥ T ε2 ,
we get

ut − d∆u

≥ ru(1− c(v1 + ε) + au− bu2)

= bru

(
u−

a−
√
a2+4b(1− c(v1+ε))

2b

)(
a+
√
a2 + 4b(1− c(v1 + ε))

2b
−u

)
.

Then it follows Lemma 2.4 and the arbitrariness of ε ∈ (0, ε0) that

(34) lim inf
t→∞

min
Ω
u(·, t) ≥

a+
√
a2 + 4b(1− cv1)

2b
=: u1 > 0,

and u1 ≥ u1. So for ε > 0 small enough, there exists T ε3 � 1 such that

u(x, t) ≥ u1 − ε > 0, x ∈ Ω, t ≥ T ε3 .
By the second equation of (3) and the above inequality, we get

vt −∆v ≥ λ(u1 − ε− v), x ∈ Ω, t ≥ T ε3 .
Then it follows Lemma 2.4 and the arbitrariness of ε that

(35) lim inf
t→∞

min
Ω
v(·, t) ≥ u1 =: v1 > 0,

and v1 ≥ v1. So for any ε ∈ v1, there exists T ε4 � 1 such that

v(x, t) ≥ v1 − ε, x ∈ Ω, t ≥ T ε4 .
By the first equation of (3) and the above inequality, for x ∈ Ω and t ≥ T ε4 ,

we get

ut − d∆u

≤ ru(1− c(v1 − ε) + au− bu2)

= bru

(
u−

a−
√
a2 + 4b(1− c(v1 − ε))

2b

)(
a+
√
a2 + 4b(1− c(v1 − ε))

2b
−u

)
.

Then it follows Lemma 2.4 and the arbitrariness of ε ∈ (0, ε0) that

(36) lim sup
t→∞

max
Ω

u(·, t) ≤
a+

√
a2 + 4b(1− cv1)

2b
=: u2 > 0,

and u1 ≥ u2.
Let

(37) φ(s) =
a+

√
a2 + 4b(1− cs)

2b
,

where s ∈ [0, v1]. Then 1 − cs > 0, and the constants u1, v1, u1, v1 and u2

constructed above satisfy

v1 = u1 = φ(v1) ≤ φ(v1) = u2 ≤ u1 = v1,(38)

u1 ≤ lim inf
t→∞

min
Ω
u(·, t) ≤ lim sup

t→∞
max

Ω
u(·, t) ≤ u2,
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v1 ≤ lim inf
t→∞

min
Ω
v(·, t) ≤ lim sup

t→∞
max

Ω
v(·, t) ≤ v1.

By induction, we can construct four sequence {ui}∞i=1, {vi}∞i=1, {ui}∞i=1, {vi}∞i=1

as follows

(39) vi = ui, ui = φ(vi), ui+1 = φ(vi), vi = ui,

such that

ui ≤ lim inf
t→∞

min
Ω
u(·, t) ≤ lim sup

t→∞
max

Ω
u(·, t) ≤ ui,

vi ≤ lim inf
t→∞

min
Ω
v(·, t) ≤ lim sup

t→∞
max

Ω
v(·, t) ≤ vi.

By (38), (39) and the decreasing property of φ, we can prove {ui}∞i=1 and
{vi}∞i=1 are increasing, {ui}∞i=1 and {vi}∞i=1 are decreasing. So there exist two
constants σ and δ such that

lim
i→∞

ui = lim
i→∞

vi = σ, lim
i→∞

ui = lim
i→∞

vi = δ,

σ ≤ lim inf
t→∞

min
Ω
u(·, t) ≤ lim sup

t→∞
max

Ω
u(·, t) ≤ δ,

σ ≤ lim inf
t→∞

min
Ω
v(·, t) ≤ lim sup

t→∞
max

Ω
v(·, t) ≤ δ,

σ =
a+

√
a2 + 4b(1− cδ)

2b
, δ =

a+
√
a2 + 4b(1− cσ)

2b
.

Then (α, α) is globally asymptotically stable if σ = δ, since we can get σ = δ =
α by the fact

δ =
a+

√
a2 + 4b(1− cδ)

2b
.

By contradiction, we assume σ 6= δ, i.e., δ > σ. Then we have

δ − σ =

√
a2 + 4b(1− cσ)−

√
a2 + 4b(1− cδ)

2b

=
2c(δ − σ)√

a2 + 4b(1− cσ) +
√
a2 + 4b(1− cδ)

=
2c(δ − σ)

2b(δ + σ)− 2a
,

which implies

δ + σ =
a+ c

b
.

Then both δ and σ are the solutions of the following equation

a+ c

b
− z =

a+
√
a2 + 4b(1− cz)

2b
, z > 0,

which is equivalent to

(40) b2z2 − b(a+ c)z + ac+ c2 − b, z > 0.
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Since b > ac+ c2, (40) has a unique solution, which implies δ = σ, a contradic-
tion. �

3. Hopf bifurcation

The main purpose of this section is to study the existence of periodic solu-
tions of (3) by using a Hopf bifurcation results developed in [16, 49, 50]. The
first result of this section is the following theorem:

Theorem 3.1. Assume (10) or (11) holds. Let Ω be a smooth domain so that
all eigenvalues µi, i ∈ N0, are simple, φi(x) is the corresponding eigenfunction.
Then there exists a n0 ∈ N0 such that µn0 < µH ≤ µn0+1, and λi,H , defined as

(41) λi,H = λH(µi)

is a Hopf bifurcation value for i ∈ {0, . . . , n0}, where µH and λH are given
in (21) and (16) respectively. At each λi,H , the system (3) undergoes a Hopf
bifurcation, and the bifurcation periodic orbits near (λ, u, v) = (λi,H , α, α) can
be parameterized as (λ(s), u(s), v(s)), so that λ(s) is the form of λ(s) = λi,H +
o(s) for s ∈ (0, ρ) for some constant ρ > 0, and

u(s)(x, t) = α+ sai cos(ω(λi,H)t)φi(x) + o(s),

v(s)(x, t) = α+ sbi cos(ω(λi,H)t)φi(x) + o(s),

where ω(λi,H) =
√
Di(λi(H)) with Di(λ) given in (9) is the corresponding time

frequency, φi(x) is the corresponding spatial eigenfunction, and (ai, bi) is the
corresponding eigenvector, i.e.,

(L(λi,H)− iω(λi,H)I)

(
aiφi(x)
biφi(x)

)
=

(
0
0

)
,

where L(λ) is given in (7). Moreover,

(1) The bifurcation periodic orbit from λ0,H = λ0 are spatially homoge-
neous, where λ0 is given in (12);

(2) The bifurcation periodic orbit from λi,H , i ∈ {1, . . . , n0}, are spatially
nonhomogeneous.

Proof. We use λ as the main bifurcation parameter. To identify possible Hopf
bifurcation value λH , we recall the following necessary and sufficient condition
from [16,49,50].

(HS) There exists i ∈ N0 such that

(42) Ti(λH) = 0, Di(λH) > 0 and Tj(λH) 6= 0, Dj(λH) 6= 0 for j ∈ N0 \ {0},
where Ti(λ) and Di(λ) are given in (9), and for the unique pair of complex
eigenvalues A(λ)± iB(λ) near the imaginary axis,

(43) A′(λH) 6= 0 and B(λH) > 0.

By the definition of λi,H in (41), we have Ti(λi,H) = 0 and Tj(λi,H) 6= 0 for
j 6= i. By (42), we need Di(λi,H) > 0 to make λi,H as a possible bifurcation
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value, which means µi < µH by Lemma 2.1, where µH is given in (21). Let
n0 ∈ N0 such that µn0

< µH ≤ µn0+1, then we can see (42) holds with
λH = λi,H for i ∈ {0, . . . , n0} (see Fig. 2). Finally, we consider the conditions
in (43). Let the eigenvalues close to the pure imaginary one at λ = λi,H be
A(λ)± iB(λ). Then

A′(λi,H) =
T ′i (λi,H)

2
= −1

2
< 0, B′(λi,H) =

√
Di(λi,H) > 0.

Then all conditions in (HS) are satisfied if i ∈ {0, . . . , n0}. �

Next we calculate the direction of Hopf bifurcation and the stability of the
bifurcating periodic orbits bifurcating from λ = λ0:

Theorem 3.2. Suppose the assumptions in Theorem 3.1 hold. Then

(1) if Re(c1(λ0)) < 0, the Hopf bifurcation at λ = λ0 is subcritical and the
bifurcating periodic solutions are orbitally asymptotical stable;

(2) if Re(c1(λ0)) > 0, the Hopf bifurcation at λ = λ0 is supercritical and
the bifurcating periodic solutions are unstable,

where Re(c1(λ0)) is define in (46).

Proof. We use the normal form method and center manifold theorem in [16]
to prove this theorem. Let L∗(λ) be the conjugate operator of L(λ) defined as
(7), i.e.,

(44) L∗(λ) =

(
d∆ + λ0 λ
−crα ∆− λ

)
,

with domain

D(L∗(λ)) = D(L(λ)) = X⊕ iX = {x1 + ix2 : x1, x2 ∈ X},

where λ0 is given in (12) and

X :=

{
(u, v) ∈ H2(Ω)×H2(Ω) :

∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω

}
.

Let

q =

(
q1

q2

)
=

(
1

1
crα (λ0 − i

√
λ0A)

)
, q∗ =

(
q∗1
q∗2

)
=

1

2|Ω|

(
1 + i

√
λ0

A

−i crα√
λ0A

)
,

and A be the constants given in (15). It holds

(1) 〈L∗(λ)ξ, η〉 = 〈ξ, L(λ)η〉 for ξ ∈ D(L∗(λ)) and η ∈ D(L(λ)),
(2) L∗(λ0)q∗ = −i

√
λ0Aq

∗ and L(λ0)q = i
√
λ0Aq,

(3) 〈q∗, q〉 = 1 and 〈q∗, q〉 = 0,

where

〈ξ, η〉 =

∫
Ω

ξ
T
ηdx

denotes the inner product in L2(Ω)× L2(Ω).
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According to [16], we decompose X = XC ⊕XS with

XC = {zq + zq : z ∈ C} , XS = {ω ∈ X : 〈q∗, ω〉 = 0} .
For any (u, v) ∈ X, there exist z ∈ C and ω = (ω1, ω2) ∈ XS such that

(u, v)T = zq + zq + (ω1, ω2)T , z =
〈
q∗, (u, v)T

〉
.

Thus,

u = z + z + ω1,

v =
z

crα

(
λ0 − i

√
λ0A

)
+

z

crα

(
λ0 + i

√
λ0A

)
+ ω2.

Then system (3) in (z, ω) coordinates become

(45)


dz

dt
= i
√
λ0Az + 〈q∗,F〉,

dω

dt
= L(λ)ω +H(z, z, ω),

where H(z, z, ω) = F− 〈q∗,F〉q − 〈q∗,F〉q, F = (f, 0)T and f = r(−bu3 + (a−
3bα)u2 − cuv), and so

〈q∗,F〉 =
1

2

(
1− i

√
λ0

A

)
f, 〈q∗,F〉 =

1

2

(
1 + i

√
λ0

A

)
f,

〈q∗,F〉q =
1

2

 1− i
√

λ0

A

− i
crα

(√
λ0A+ λ0

√
λ0

A

)  f,

〈q∗,F〉q ==
1

2

 1 + i
√

λ0

A

i
crα

(√
λ0A+ λ0

√
λ0

A

)  f.

A direct calculation shows that H(z, z, ω) = (0, 0)T .
Let

H(z, z, ω) =
1

2
H20z

2 +H11zz +
1

2
H02z

2 + o(|z|2).

It follows [16, Appendix A] that the system (45) possesses a center manifold,
then we can write ω in the form

ω =
1

2
ω20z

2 + ω11zz +
1

2
ω02z

2 + o(|z|2).

Thus we have

ω02 = w20 =
(

2i
√
λ0AI − L

)−1

H20 = 0, ω11 = (−L)−1H11 = 0.

For later uses, we denote

c0 = fuuq
2
1 + 2fu,vq1q2 + fvvq

2
2 = 2r(a− 3bα)− 2rcq2,

d0 = fuu|q1|2 + fuv(q1q2 + q1q2) + fvv|q2|2 = 2r(a− 3bα)− rc(q2 + q2),
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e0 = fuuu|q1|2q1 + fuuv(2|q1|2q2 + q2
1q2)

+ fuvv(2q1|q2|2 + q1q
2
2) + fvvv|q2|2q2 = −6rb,

with all the partial derivatives evaluated at the point (u, v) = (0, 0). Therefore,
the model (3) restricted the center manifold in z, z coordinates is given by

dz

dt
= i
√
λ0Az +

1

2
φ20z

2 + φ11zz +
1

2
φ02z

2 +
1

2
φ21z

2z + o(|z|3),

where

φ20 = 〈q∗, (c0, 0)T 〉 = r(a− 3bα) + i

(
1

a

√
λ0A+

√
λ0

A

(
λ0

a
−r(a−3bα)

))
,

φ11 = 〈q∗, (d0, 0)T 〉 =

(
r(a− 3bα) +

λ0

α

)(
1− i

√
λ0

A

)
,

φ21 = 〈q∗, (e0, 0)T 〉 = −3rb

(
1− i

√
λ0

A

)
.

According to [16], we have

(46)

Re(c1(λ0)) = Re

{
i

2
√
λ0A

(
φ20φ11 − 2|φ11|2 −

1

3
|φ02|2

)
+

1

2
φ21

}
= − 1

2
√
λ0A

[Re(φ20)Im(φ11) + Im(φ20)Re(φ11)] +
1

2
Re(φ21)

= −1

2

[
r(a− 3bα) +

λ0

2

] [
1

a
+

1

a
λ2

0 − 2r(a− 3bα)λ0

]
− 3

2
rb.

�

4. Analysis of the steady state solutions

In this section, we consider the existence/nonexistence of nonconstant pos-
itive solutions to (4). This section is divided into three parts. In the first
part, we give some a priori estimates of the solutions of (4), which are useful
in the later discussions. In part 2 we study the nonexistence of nonconstant
solutions of (4), while in part 3 we study the existence of nonconstant solutions
via bifurcation method.

4.1. A priori estimates

To derive a priori estimates, we need the follow lemma given in [24]:

Lemma 4.1. Suppose that g ∈ (Ω×R).

(i) Assume that w ∈ C2(ω) ∩ C1(Ω) and satisfies

(47) ∆w(x) + g(x,w(x)) ≥ 0 in Ω,
∂w

∂ν
≤ 0 on ∂Ω.

If w(x0) = maxx∈Ω w(x), then g(x0, w(x0)) ≥ 0.
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(ii) Assume that w ∈ C2(ω) ∩ C1(Ω) and satisfies

(48) ∆w(x) + g(x,w(x)) ≤ 0 in Ω,
∂w

∂ν
≥ 0 on ∂Ω.

If w(x0) = minx∈Ω w(x), then g(x0, w(x0)) ≤ 0.

Theorem 4.2. Let (u, v) be a positive solution of (4). Assume

(49) c ≤ 1

2

(√
a2 + 4b− a

)
,

then

(50) M < u(x), v(x) < M,

where

M =
a+

√
a2 + 4b− 2c

(
a+
√
a2 + 4b

)
2b

∈
(

0,
1

c

)
,

M =
a+

√
a2 + 4b(1− cM)

2b
∈
(
M,

1

c

)
.

Proof. Let

u(x1) = max
Ω

u(x), v(x2) = max
Ω

v(x), u(y1) = min
Ω
u(x), v(y2) = min

Ω
v(x).

Then by Lemma 4.1,

1 + au(x1)− bu2(x1)− cv(x1) ≥ 0, 1 + au(y1)− bu2(y1)− cv(y1) ≤ 0,(51)

u(x2)− v(x2) ≥ 0, u(y2)− v(y2) ≤ 0.(52)

By the first equation of (4) we get

−d∆u ≤ ru(1 + au− bu2) = bru

(
u− a−

√
a2 + 4b

2b

)(
a+
√
a2 + 4b

2b
− u

)
.

Then we get from Lemma 4.1 that

(53) u(x1) ≤ a+
√
a2 + 4b

2b
.

Then it follows from (51), (52) and (53) that

bu2(x1)− au(x1) + cu(y1)− 1 ≤ 0,(54)

bu2(y1)− au(y1) + cu(x1)− 1 ≥ 0,(55)

v(x2) ≤ u(x1), v(y2) ≥ u(y1).(56)

By (53) and (55), we have

(57) bu2(y1)− au(y1) +
c
(
a+
√
a2 + 4b

)
2b

− 1 ≥ 0.
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If

c ≤ 2b

a+
√
a2 + 4b

=
1

2

(√
a2 + 4b− a

)
,

then by (57), we have u(y1) > M and 0 < M < 1/c. The remain conclusions
follow from (54) and (56). �

Remark 4.3. We give two remarks about the above theorem.

(1) By the definitions of M and M in Theorem 4.2, we know that

lim
c→0

M = lim
c→0

M =
a+
√
a2 + 4b

2b
=: α0.

Then it follows from Theorem 4.2 that

lim
c→0

(u, v) = (α0, α0),

where (u, v) is the positive solution of (4), and it is easy to see (α0, α0)
is the unique positive constant solution of (4) when c = 0. These
facts intrigue us to consider the nonexistence of nonconstant positive
solution of (4) when c is small enough (see part 3 of Remark 4.7).

(2) Let’s re-consider the proof of Theorem 4.2 and set ρ(t) = −bt2 +at+1.
Then we can write (55) as

cu(x1) ≥ ρ(u(y1)).

Since 0 ≤ u(y1) ≤ u(x1), we get

(58) cu(x1) ≥ min{ρ(0), ρ(u(x1))} = min{1, ρ(u(x1))}.

If ρ(u(x1)) ≥ 1, we get from (58) that u(x1) ≥ 1/c > 0. On the other
hand, if ρ(u(x1)) < 1, we get form (58) that u(x1) ≥ α > 0, where
α is the positive constant defined as (5). In all we get the following
estimate without the assumptions in Theorem 4.2

(59) max
x∈Ω

u(x) ≥ C1 := min

{
1

c
, α

}
.

The following Harnack inequality can be found in [22].

Lemma 4.4. Let w ∈ C2(Ω) ∩ C1(Ω) be a positive solution to

∆w(x) + c(x)w(x) = 0 in Ω,
∂w

∂ν
= 0 on ∂Ω,

where c(x) is a continuous function on Ω. Then there exists a positive constant
C, depending only on

‖c‖∞ := max
x∈Ω
|c(x)|

and Ω, such that

(60) max
x∈Ω

w(x) ≤ C min
x∈Ω

w(x).
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By using (59) and the above lemma, we can ignore (49) in Theorem 4.2 and
achieve the following theorem.

Theorem 4.5. Assume (u, v) is a positive solution of (4) with d ≥ d1, where
d1 is any positive constant. Then there exists a positive constant θ depending
only on a, b, c, r, d1 and Ω such that

θ ≤ u(x), v(x) ≤ a+
√
a2 + 4b

2b
.

Proof. It follows from the proof of Theorem 4.2 that

u(x) ≤ a+
√
a2 + 4b

2b
, v(x) ≤ a+

√
a2 + 4b

2b
, x ∈ Ω,

and

(61) min
x∈Ω

u(x) ≤ min
x∈Ω

v(x).

Rewrite the first equation of (31) as ∆u(x) + c(x)u(x) = 0 with

c(x) :=
r

d
(1 + au− bu2 − cv).

Then it follows from

‖c‖∞ ≤
r

d

(
1 + a‖u‖∞ + b‖u‖2∞ + c‖v‖∞

)
≤ r

d1

(
1 + (a+ c)

a+
√
a2 + 4b

2b
+

(
a+
√
a2 + 4b

)2
4b

)
,

(59) and Lemma 4.4 that there exists a positive constant C, depending only
on a, b, c, r, d1 and Ω such that

C1 ≤ max
x∈Ω

u(x) ≤ C min
x∈Ω

u(x).

So we have

u(x) ≥ C1

C
, x ∈ Ω.

By (61),

v(x) ≥ C1

C
, x ∈ Ω.

Then the conclusion holds with

θ =
C1

C
,

which depends only on a, b, c, r, d1 and Ω. �
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4.2. Nonexistence of positive nonconstant steady state solutions

In this part, we will prove that (4) has no positive nonconstant solutions if
the diffusion coefficient d is large or the “size”of Ω is small.

Theorem 4.6. Assume (49) holds. Let M and M be the two constants defined
as Theorem 4.2. If µ1, d satisfies

(62) dµ1 > 1 + 2aM − 3bM2 − cM,

then (4) has no positive nonconstant solutions.

Proof. Let ξ := |Ω|−1
∫

Ω
ξ(x)dx, φ := u − u and ψ := v − v. Assume (u, v)

be a positive solution of (4). It is obvious that
∫

Ω
φdx =

∫
Ω
ψdx = 0. Multi-

plying the second equation of (4) by φ and integrating over Ω. By Poincaré’s
inequality, we obtain

µ1

∫
Ω

ψ2dx ≤
∫

Ω

|∇ψ|2dx = λ

∫
Ω

φψdx− λ
∫

Ω

ψ2dx,

which implies
∫

Ω
φψ ≥ 0. Multiplying the first equation of (4) by φ and

integrating over Ω. By Poincaré’s inequality, Theorem 4.2 and
∫

Ω
φψ ≥ 0, we

obtain

µ1d

r

∫
Ω

|φ|2dx ≤ d

r

∫
Ω

|∇φ|2dx

=

∫
Ω

(1 + a(u+ u)− b(u2 + uu+ u2)− cv)φ2dx− u
∫

Ω

φψdx

≤ (1 + 2aM − 3bM2 − cM)

∫
Ω

φ2.

Under our hypothesis, the above equality implies u ≡ u. Then v satisfies

(63)


−∆v + λv = λu, x ∈ Ω,

∂v

∂ν
= 0, x ∈ ∂Ω.

Since λ > 0, the above problem has a unique solution v = λ(−∆ + λ)−1u ≡
u. �

Remark 4.7. We give some remarks of Theorem 4.6.

(1) It is clear that Theorem 4.6 holds if (49) is satisfied and µ1 is large
enough. Note that large µ1 is reflected by small “size”of the domain Ω
(see [7, 30] for precise explanation of “size”).

(2) Obviously, Theorem 4.6 holds if (49) is satisfied and d is large enough.
(3) We choose c is small enough such that (49) holds. Let %(t) = 1 + 2at−

3bt2. Then %(t) is strictly decreasing on (a/(3b),∞). By remark 4.3,
we know that

lim
c→0

M = lim
c→0

M =
a+
√
a2 + 4b

2b
.
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Since

a+
√
a2 + 4b

2b
>
a+
√
a2 + 3b

3b
>

a

3b
,

then

lim
c→0

1 + 2aM − 3bM2 − cM = %

(
a+
√
a2 + 4b

2b

)
< %

(
a+
√
a2 + 3b

3b

)
= 0.

So Theorem 4.6 holds if c is small enough.

Based on part 3 of Remark 4.7, we can get:

Proposition 4.8. Let a, b, d, r, λ be fixed positive constants. Then there exists
a positive constant c0 depending on a, b, d, r, λ and Ω such that (4) has no
positive nonconstant solutions when c < c0.

Next we want to discard the condition (49) in part 2 of above remark. To
this end, we firstly introduce the following lemma.

Lemma 4.9. Assume (ui, vi) is the positive solution of (4) with d = di, where
di → ∞ as i → ∞, then (ui, vi) → (α, α) in C2(Ω)× C2(Ω) as i → ∞, where
(α, α) is the unique constant equilibrium of (4) defined as (5).

Proof. By Theorem 4.5, Sobolev embedding theory and standard regularity
theory of elliptic equations, there exists a subsequence of (ui, vi), relabeled as
itself, and (u, v) ∈ C2(Ω)×C2(Ω) such that (ui, vi)→ (u, v) in C2(Ω)×C2(Ω)
as i→∞. Furthermore, it follows from Theorem 4.5 that u, v ≥ θ > 0, where
θ is a positive constants given in Theorem 4.5, and (u, v) satisfies

(64)



−∆u = 0, x ∈ Ω,

−∆v = λ(u− v), x ∈ Ω,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω,∫

Ω

u(1 + au− bu2 − cv)dx = 0.

From the equations for u in (64), we know there exists a positive constant c
such that u ≡ c. Then v satisfies

(65)


−∆v + λv = λc, x ∈ Ω,

∂v

∂ν
= 0, x ∈ ∂Ω.

Then v = λ(−∆ + λ)−1c = c and it follows form u = v ≡ c > 0 and the forth
relation of (64) that 1 + ac− bc2 − c2 = 0, that is c = α. �

Based on Lemma 4.9, we can obtain the following result by using Implicit
Function Theorem.
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Theorem 4.10. Let a, b, c, r, λ be fixed positive constants. Then there exists a
positive constant D depending on a, b, c, r, λ and Ω such that (4) has no positive
nonconstant solutions when d > D.

Proof. Let u = w + ξ, where ξ = |Ω|−1
∫

Ω
udx. Then

∫
Ω
wdx = 0. We observe

that finding solutions of (4) is equivalent to solving the following problem
(σ = 1/d)

(66)



∆w + σr(w + ξ)(1 + a(w + ξ)− b(w + ξ)2 − cv) = 0, x ∈ Ω,

∆v + λ(w + ξ − v) = 0, x ∈ Ω,

∂w

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω,∫

Ω

(w + ξ)(1 + a(w + ξ)− b(w + ξ)2 − cv)dx = 0.

Obviously, for all σ > 0, (w, v, ξ) = (0, α, α) is a solution of (66), where α is
defined as (5).

So, to complete the proof, we only need to prove there exists a positive
constant σ0 depending on a, b, c, r, λ and Ω such that when σ < σ0, (0, α, α) is
the unique solution of (66).

Let

f1(σ,w, v, ξ) = ∆w + σr(w + ξ)(1 + a(w + ξ)− b(w + ξ)2 − cv),

f2(σ,w, v, ξ) = ∆v + λ(w + ξ − v),

f3(σ,w, v, ξ) =

∫
Ω

(w + ξ)(1 + a(w + ξ)− b(w + ξ)2 − cv)dx.

Then we define

W 2,2
ν =

{
ω ∈W 2,2(Ω) :

∂ω

∂ν

∣∣∣∣
∂Ω

= 0

}
,

L2
0 =

{
ω ∈ L2(Ω) :

∫
Ω

ωdx = 0

}
.

So,

F (σ,w, v, ξ)

= (f1, f2, f3)(σ,w, v, ξ) : R1
+ ×

(
L2

0 ∩W 2,2
ν

)
×W 2,2

ν ×R1
+ → L2

0 × L2 ×R1,

and (66) is equivalent to solving F (σ,w, v, ξ) = 0. Moreover, similar to the
proof of Lemma 4.9, (66) has a unique solution (w, v, ξ) = (0, α, α) when σ = 0.
By simple computations, we have

Φ(y, z, τ) :=D(w,v,ξ)F (0, 0, α, α)(y, z, τ)

=

 ∆y
∆z + λ(y − z + τ)∫

Ω

[(
1 + (2a− c)α− 3bα2

)
(y + τ)− cαz

]
dx

 ,
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then

Φ :
(
L2

0 ∩W 2,2
ν

)
×W 2,2

ν ×R1
+ → L2

0 × L2 ×R1.

In order to use Implicit Function Theorem, we need to prove Φ is bijective.
Obviously, Φ is surjective. So we only need to prove the homogeneous equation
Φ(y, z, τ) = 0 admits unique solution y = z = τ = 0.

Firstly, it follows from Φ(y, z, τ) = 0 that y satisfies
∆y = 0, x ∈ Ω,

∂y

∂ν
= 0, x ∈ ∂Ω,∫

Ω

ydx = 0.

Then y ≡ 0.
Secondly, it follows from Φ(y, z, τ) = 0 and y ≡ 0 that z satisfies

−∆z + λz = λτ, x ∈ Ω,

∂z

∂ν
= 0, x ∈ ∂Ω.

Since λ > 0, the operator −∆ + λ is invertible, which together with τ is a
constant, imply z = λ(−∆ + λ)−1τ is a constant.

Finally, it follows Φ(y, z, τ) = 0, y ≡ 0 and y, τ are both constant that

(67) z = τ and
(
1 + (2a− c)α− 3bα2

)
τ − cαz = 0.

Recall (α, α) is the positive constant solution of (4), we know α satisfies 1 +
(a− c)α = bα2. Then we get

(68) ((c− a)α− 2)z = 0.

Since (c − a)α − 2 = (c − a)α − 1 − 1 = −bα2 − 1 < 0, we get from (67) and
(68) that z = τ = 0.

By the Implicit function Theorem, there exists positive constants σ0 and ε0
such that for each σ ∈ (0, σ0), (0, α, α) is the unique solution of F (σ,w, v, ξ) = 0
in Bε0(0, α, α), where Bε0(0, α, α) is the ball in

(
L2

0 ∩W 2,2
ν

)
×W 2,2

ν ×R1 cen-
tered at (0, α, α) with radius ε0. Taking smaller σ0 and ε0 smaller if necessary,
we can conclude the proof by using Lemma 4.9. �

4.3. Existence of positive nonconstant steady state solutions

In this part, we analyze model (4) by bifurcation theory with λ as the bi-
furcation parameter.

Theorem 4.11. Assume (10) or (11) holds. Let Ω be a bounded smooth do-
main so that all eigenvalues µi, i ∈ N0, are simple, φi(x) is the corresponding
eigenfunction. Moreover,

(SP) There exist p, q ∈ N such that µp−1 ≤ µH < µp ≤ µq < µ∗3 ≤ µq+1,
where µ∗3 and µH are given in (20) and (21) respectively.
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Then for any i ∈ dp, qe, which is defined as

(69)
dp, qe =

{
[p, q] ∩N, if p < q;
{p}, if p = q,

λi,S = λS(µi) for i ∈ dp, qe,

there exists a unique λi,S such that Di(λi,S) = 0 and Ti(λi,S) 6= 0. If in
addition, we assume that

(70) λi,S 6= λj,S , λi,S 6= λj,H for any j ∈ dp, qe and i 6= j,

where λj,H is defined as (41), then the following conclusions hold.

(1) There is a smooth curve Γi of positive solutions of (4) bifurcating from
(λ, u, v) = (λi,S , α, α). Near (λ, u, v) = (λi,S , α, α), we have Γi =
{(λi(s)), ui(s), vi(s) : |s| < ε}, where{

ui(s) = α+ sliφi(x) + sψ1,i(s),

vi(s) = α+ smiφi(x) + sψ2,i(s),

for some smooth functions λi, ψ1,i and ψ2,i such that λi(0) = λi,S and
ψ1,i(0) = ψ2,i(0) = 0. Here li,mi satisfies

L(λi,S)
[
(li,mi)

Tφi(x)
]

= (0, 0)T ,

where ε is a small positive constant, α is the positive constant given in
(5), L is the operator defined as (7).

(2) In addition, Γi contained in a global branch Σi of positive nontrivial
solutions of (4), and either Σi contains another (λj,S , α, α) or the pro-

jection of Σi onto λ-axis contains the interval (0, λi,S), or the projection

of Σi onto λ-axis contains the interval (λi,S ,∞).

Proof. We identify state bifurcation value λS of (4), which satisfies the follow-
ing conditions [50].

(SS) There exists i ∈ N0 such that

Di(λS) = 0, D′i(λS) 6= 0, Ti(λS) 6= 0, Dj(λS) 6= 0 and Tj(λS) 6= 0

for j ∈ N0 \ {i}, where Di(λ) and Ti(λ) are given in (9).
SinceD0(λ) = λA > 0, where A is defined as (15), we only consider i ∈ N. In

the following, we determine λ-values satisfying (SS). We notice that Di(λ) = 0
is equivalent to λ = λS(µi), where λS(µ) is defined as (17). Hence we make
the following additional assumption on the spectral set {µn}n∈N0

according to
Lemma 2.1.

In the following, for p, q satisfy (SP), the points λi,S defined in (69) are
potential steady state bifurcation points. In follows from Lemma 2.1 that for
each i ∈ dp, qe, there exists only one point λ = λi,S such that Di(λi,S) = 0 and
Ti(λi,S) 6= 0. On the other hand, it is possible that for some λ ∈ (λS(µH), λ∗S)
with λ∗S defined as (26) such that

(SQ) λi,S = λj,S = λ̃ for some i, j ∈ dp, qe and i 6= j, i.e., Di(λ̃) = Dj(λ̃).
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(SS) is not satisfied for i if (SQ) holds, and we shall not consider bifurcations
at such a point. On the other hand, it is also possible that

(SR) λi,S = λj,H for some i, j ∈ dp, qe and i 6= j, where λj,H is a Hopf
bifurcation point defined as (41).

However, from an argument in [50], for N = 1 and Ω = (`π), there are only
countably many `, such that (SQ) or (SP) occurs. One also can show that
(SQ) or (SP) does not occur for generic domains in RN (see [39]). Finally,
since D′i(λi,S) = dµi +A > 0, we get D′i(λi,S) 6= 0.

The condition (SS) has been proved in the previous paragraphs, and the
bifurcation solutions to (4) occur at λ = λi,S . Note that we assume (70) holds,
so λ = λi,S is always a bifurcation from simple eigenvalue point. Then the
first conclusions follows from [50]. By Theorem 4.5, we know that the positive
solution (u, v) ∈ Γi has positive upper and lower bounds independent of λ
if (49) holds. From the global bifurcation in [37], Γi is contained in a global
branch Σi of positive solutions, and either Σi contains another (λj,S , α, α) or Σi
is not compact. Furthermore, if Σi is not compact, then Σi contains a boundary
point (λ̃, ũ, ṽ), and since (ũ, ṽ) satisfies (50), it follows λ̃ = 0 or λ̃ =∞ and the
second conclusion follows. �

5. Numerical simulation

To visualize the cascade of asymptotically stability, Turing instability, Hopf
bifurcation and steady state bifurcations described in Theorems 2.2, 2.3, 3.1 and
4.11, we consider serval numerical examples and assume the spatial dimension
N = 1 and Ω = (0, 3π). Then µi = i2/9, i ∈ N0. In the following we use the
notations in Lemma 2.1, Theorems 2.2, 2.3, 3.1 and 4.11.

Example 5.1. We choose a = 5, b = 2, c = 4, r = 1 such that (10) hold. Then

α = 1, λ0 = 1, A = 3, D∗2 = −1 + 2/
√

3 ≈ 0.1547, D∗3 = (2 −
√

3)2 ≈ 0.0718,

D∗4 = (2 +
√

3)2 ≈ 13.9282.
Firstly, We choose d = 0.05 to satisfy d < D∗2 and d < D∗3 such that λ∗S > λ0,

then we can compute µL = 4 and µR = 15. So we have

µ6 = µL < µ7 =
49

9
< µ8 =

64

9
< µ9 =

81

9
< µ10

=
100

9
< µ11 =

121

9
< µR < µ12 = 16.

Then

λ = max{λS(µ7), λS(µ8), λS(µ9), λS(µ10), λS(µ11)} = λS(µ10) ≈ 1.3889.

Furthermore, we can compute µH ≈ 0.7314 and µ∗3 = 20, then by (69),
µi, i = 4, . . . , 13, are possible state bifurcation values. Firstly, if we choose
λ > λ, then it follows from Theorem 2.2 that (α, α) = (1, 1) is asymptotically
stable (see Fig. 3). Secondly, when λ decreases, the first bifurcation point
encountered is λS(µ10) ≈ 1.3889, so if we choose λ ∈ (λ0, λ), which implies
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Figure 3. Numerical simulation of the system (3) with a = 5,
b = 2, c = 4, r = 1 such that (10) hold. We choose d =
0.05, λ = 1.5 and the initial values u0(x) = v0(x) = 1 +
0.5 cos(0.2/(3π)x), then the solution convergence to the unique
positive equilibrium (1, 1).

Figure 4. Numerical simulation of the system (3) with a = 5,
b = 2, c = 4, r = 1 such that (10) hold. We choose d =
0.05, λ = 1.1 and the initial values u0(x) = v0(x) = 1 +
0.5 cos(0.2/(3π)x), then the solution convergence to a spatially
nonhomogeneous steady state solution. The upper two graphs
are for u, the lower two graphs are for v.

Hopf bifurcation cannot happen since the largest Hopf bifurcation value is λ0,
then steady state bifurcation (Turing bifurcation) happens (see Fig. 4).
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Figure 5. Numerical simulation of the system (3) with a = 5,
b = 2, c = 4, r = 1 such that (10) hold. We choose
d = 0.2, λ = 1.1 and the initial values u0(x) = v0(x) =
1 + 0.5 cos(0.2/(3π)x), then the solution convergence to the
unique positive equilibrium (1, 1).

Figure 6. Numerical simulation of the system (3) with a = 5,
b = 2, c = 4, r = 1 such that (10) hold. We choose
d = 0.2, λ = 0.9 and the initial values u0(x) = v0(x) =
1 + 0.5 cos(0.2/(3π)x), then the solution convergence to a spa-
tially homogeneous periodic orbit.

Secondly, we choose d = 0.2 > D∗2 such that λ∗S ≈ 0.3590 < λ0, then λ = λ0.
Since

λ0 = λH(µ0) > λ1 = λH(µ1) ≈ 0.8667

> λH(µ2) ≈ 0.4667 > λH(µ∗2) = 0 > λH(µ3) = −0.2,

then the possible Hopf bifurcation values are λH(µi), i = 0, 1, 2. Firstly, if
we choose λ > λ = λ0, then it follows from Theorem 2.2 that (α, α) = (1, 1)
is asymptotically stable (see Fig. 5). Secondly, when λ decreases, the first
bifurcation point encountered is λ0 = 1, so if we choose λ ∈ (λ∗S , λ0), which
implies steady state cannot happen since the largest steady state bifurcation
value is no larger than λ∗S , then Hopf bifurcation happens (see Fig. 6).
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Figure 7. Numerical simulation of the system (3) with a = 5,
b = 2, c = 4, r = 1 such that (10) hold. We choose
d = 0.1, λ = 1.1 and the initial values u0(x) = v0(x) =
1 + 0.5 cos(0.2/(3π)x), then the solution convergence to the
unique positive equilibrium (1, 1).

Figure 8. Numerical simulation of the system (3) with a = 5,
b = 2, c = 4, r = 1 such that (10) hold. We choose
d = 0.1, λ = 0.9 and the initial values u0(x) = v0(x) =
1 + 0.5 cos(0.2/(3π)x), then the solution convergence to a spa-
tially homogeneous periodic orbit.

Thirdly, we choose d = 0.1 ∈ (D∗3 , D
∗
2) such that λ∗S ≈ 0.7180 < λ0, then

λ = λ0. Since

λ0 = λH(µ0) > λ1 = λH(µ1) ≈ 0.8778

> λH(µ2) ≈ 0.5111 > λH(µ∗2) = 0 > λH(µ3) = −0.1,

then the possible Hopf bifurcation values are λH(µi), i = 0, 1, 2. Firstly, if
we choose λ > λ = λ0, then it follows from Theorem 2.2 that (α, α) = (1, 1)
is asymptotically stable (see Fig. 7). Secondly, when λ decreases, the first
bifurcation point encountered is λ0 = 1, so if we choose λ ∈ (λ∗S , λ0), which
implies steady state cannot happen since the largest steady state bifurcation
value is no larger than λ∗S , then Hopf bifurcation happens (see Fig. 8).



BIFURCATION ANALYSIS OF A SINGLE SPECIES R-D MODEL 275

Figure 9. Numerical simulation of the system (3) with a = 3,
b = 2, c = 4, r = 1 such that (11) hold. We choose d =
0.05, λ = 0.5 and the initial values u0(x) = v0(x) = 0.5 +
1.5 cos(0.2/(3π)x), then the solution convergence to the unique
positive equilibrium (0.5, 0.5).

Figure 10. Numerical simulation of the system (3) with a =
3, b = 2, c = 4, r = 1 such that (11) hold. We choose d =
0.05, λ = 0.6 and the initial values u0(x) = v0(x) = 0.5 +
1.5 cos(0.2/(3π)x), then the solution convergence to a spatially
nonhomogeneous steady state solution. The upper two graphs
are for u, the lower two graphs are for v.

Example 5.2. We choose a = 3, b = 2, c = 4, r = 1 such that (11) hold. Then

α = 0.5, λ0 = 0.5, A = 1.5, D∗2 = −1 + 2/
√

3 ≈ 0.1547, D∗3 = (2 −
√

3)2 ≈
0.0718, D∗4 = (2 +

√
3)2 ≈ 13.9282.
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Figure 11. Numerical simulation of the system (3) with a =
3, b = 2, c = 4, r = 1 such that (11) hold. We choose d =
0.2, λ = 0.6 and the initial values u0(x) = v0(x) = 0.5 +
1.5 cos(0.2/(3π)x), then the solution convergence to the unique
positive equilibrium (0.5, 0.5).

Figure 12. Numerical simulation of the system (3) with a =
3, b = 2, c = 4, r = 1 such that (11) hold. We choose d =
0.2, λ = 0.4 and the initial values u0(x) = v0(x) = 0.5 +
1.5 cos(0.2/(3π)x), then the solution convergence to a spatially
homogeneous periodic orbit.

Firstly, We choose d = 0.05 to satisfy d < D∗2 and d < D∗3 such that λ∗S > λ0,
then we can compute µL = 2 and µR = 7.5. So we have

µ4 =
16

9
< µL < µ5 =

25

9
< µ6 =

36

9
< µ7 =

49

9
< µ8 =

64

9
< µR < µ9 = 9.

Then

λ = max{λS(µ5), λS(µ6), λS(µ7), λS(µ8)} = λS(µ6) ≈ 0.7059.

Furthermore, we can compute µH ≈ 0.3657 and µ∗3 = 10, then by (69), µi,
i = 2, . . . , 9, are possible state bifurcation values. Firstly, if we choose λ > λ,
then it follows from Theorem 2.2 that (α, α) = (0.5, 0.5) is asymptotically
stable (see Fig. 9). Secondly, when λ decreases, the first bifurcation point
encountered is λS(µ6) ≈ 0.7059, so if we choose λ ∈ (λ0, λ), which implies
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Figure 13. Numerical simulation of the system (3) with a =
3, b = 2, c = 4, r = 1 such that (11) hold. We choose d =
0.1, λ = 0.6 and the initial values u0(x) = v0(x) = 0.5 +
1.5 cos(0.2/(3π)x), then the solution convergence to the unique
positive equilibrium (0.5, 0.5).

Figure 14. Numerical simulation of the system (3) with a =
3, b = 2, c = 4, r = 1 such that (11) hold. We choose d =
0.1, λ = 0.4 and the initial values u0(x) = v0(x) = 0.5 +
1.5 cos(0.2/(3π)x), then the solution convergence to a spatially
homogeneous periodic orbit.

Hopf bifurcation cannot happen since the largest Hopf bifurcation value is λ0,
then steady state bifurcation (Turing bifurcation) happens (see Fig. 10).

Secondly, we choose d = 0.2 > D∗2 such that λ∗S ≈ 0.1795 < λ0, then λ = λ0.
Since

λ0 = λH(µ0) > λ1 = λH(µ1) ≈ 0.3667 > λH(µ∗2) = 0 > λH(µ2) = −0.0333,

then the possible Hopf bifurcation values are λH(µi), i = 0, 1. Firstly, if we
choose λ > λ = λ0, then it follows from Theorem 2.2 that (α, α) = (0.5, 0.5)
is asymptotically stable (see Fig. 11). Secondly, when λ decreases, the first
bifurcation point encountered is λ0 = 0.5, so if we choose λ ∈ (λ∗S , λ0), which
implies steady state cannot happen since the largest steady state bifurcation
value is no larger than λ∗S , then Hopf bifurcation happens (see Fig. 12).
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Thirdly, we choose d = 0.1 ∈ (D∗3 , D
∗
2) such that λ∗S ≈ 0.3590 < λ0, then

λ = λ0. Since

λ0 = λH(µ0) > λ1 = λH(µ1) ≈ 0.3778

> λH(µ2) ≈ 0.0111 > λH(µ∗2) = 0 > λH(µ3) = −0.6,

then the possible Hopf bifurcation values are λH(µi), i = 0, 1, 2. Firstly, if we
choose λ > λ = λ0, then it follows from Theorem 2.2 that (α, α) = (0.5, 0.5)
is asymptotically stable (see Fig. 13). Secondly, when λ decreases, the first
bifurcation point encountered is λ0 = 0.5, so if we choose λ ∈ (λ∗S , λ0), which
implies steady state cannot happen since the largest steady state bifurcation
value is no larger than λ∗S , then Hopf bifurcation happens (see Fig. 14).
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[23] J. López-Gómez, J. C. Eilbeck, M. Molina, and K. N. Duncan, Structure of solution

manifolds in a strongly coupled elliptic system, IMA J. Numer. Anal. 12 (1992), no. 3,
405–428. https://doi.org/10.1093/imanum/12.3.405

[24] Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equa-

tions 131 (1996), no. 1, 79–131. https://doi.org/10.1006/jdeq.1996.0157
[25] W. Mazin, K. Rasmussen, E. Mosekilde, P. Borckmans, and G. Dewel, Pattern formation

in the bistable gray-scott model, Math. Comput. Simu. 40 (1996), no. 3, 371–396.
[26] J. S. McGough and K. Riley, Pattern formation in the Gray-Scott model, Nonlinear

Anal. Real World Appl. 5 (2004), no. 1, 105–121. https://doi.org/10.1016/S1468-

1218(03)00020-8

[27] W.-M. Ni, Qualitative properties of solutions to elliptic problems, Handbook of Differen-

tial Equations: Stationary Partial Differential Equations, Volume 1, Chapter 3, 157–233,

2004.
[28] W.-M. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA

reaction, Trans. Amer. Math. Soc. 357 (2005), no. 10, 3953–3969. https://doi.org/

10.1090/S0002-9947-05-04010-9

[29] R. Peng, Qualitative analysis of steady states to the Sel′kov model, J. Differential Equa-

tions 241 (2007), no. 2, 386–398. https://doi.org/10.1016/j.jde.2007.06.005

[30] R. Peng, J. Shi, and M. Wang, On stationary patterns of a reaction-diffusion model
with autocatalysis and saturation law, Nonlinearity 21 (2008), no. 7, 1471–1488. https:

//doi.org/10.1088/0951-7715/21/7/006

[31] R. Peng and F. Sun, Turing pattern of the Oregonator model, Nonlinear Anal. 72 (2010),

no. 5, 2337–2345. https://doi.org/10.1016/j.na.2009.10.034

[32] R. Peng and M. X. Wang, Pattern formation in the Brusselator system, J. Math. Anal.
Appl. 309 (2005), no. 1, 151–166. https://doi.org/10.1016/j.jmaa.2004.12.026

https://doi.org/10.1007/978-3-642-22664-9
https://doi.org/10.1016/S0893-9659(99)00035-X
https://doi.org/10.1016/S0893-9659(99)00035-X
https://doi.org/10.1007/s00285-003-0258-y
https://doi.org/10.1007/s00285-003-0258-y
https://doi.org/10.1007/s10884-004-2782-x
https://doi.org/10.1216/RMJ-2013-43-5-1637
https://doi.org/10.1016/j.physd.2005.12.005
https://doi.org/10.1016/j.physd.2005.12.005
https://doi.org/10.1016/0022-0396(88)90147-7
https://doi.org/10.1016/0022-0396(88)90147-7
https://doi.org/10.1093/imanum/12.3.405
https://doi.org/10.1006/jdeq.1996.0157
https://doi.org/10.1016/S1468-1218(03)00020-8
https://doi.org/10.1016/S1468-1218(03)00020-8
https://doi.org/10.1090/S0002-9947-05-04010-9
https://doi.org/10.1090/S0002-9947-05-04010-9
https://doi.org/10.1016/j.jde.2007.06.005
https://doi.org/10.1088/0951-7715/21/7/006
https://doi.org/10.1088/0951-7715/21/7/006
https://doi.org/10.1016/j.na.2009.10.034
https://doi.org/10.1016/j.jmaa.2004.12.026


280 J. ZHOU

[33] , Some nonexistence results for nonconstant stationary solutions to the Gray-

Scott model in a bounded domain, Appl. Math. Lett. 22 (2009), no. 4, 569–573. https:

//doi.org/10.1016/j.aml.2008.06.032

[34] R. Peng, M. Wang, and M. Yang, Positive steady-state solutions of the Sel′kov model,

Math. Comput. Modelling 44 (2006), no. 9-10, 945–951. https://doi.org/10.1016/j.
mcm.2006.03.001

[35] J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, J. Theo-

ret. Biol. 81 (1979), no. 3, 389–400. https://doi.org/10.1016/0022-5193(79)90042-0
[36] E. Sel’Kov, Self-oscillations in glycolysis, Eur. J. Bioch. 4 (1968), no. 1, 79–86.

[37] J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded

domains, J. Differential Equations 246 (2009), no. 7, 2788–2812. https://doi.org/10.
1016/j.jde.2008.09.009

[38] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London

Ser. B 237 (1952), no. 641, 37–72.
[39] J. Wang, J. Shi, and J. Wei, Dynamics and pattern formation in a diffusive predator-

prey system with strong Allee effect in prey, J. Differential Equations 251 (2011), no. 4-5,

1276–1304. https://doi.org/10.1016/j.jde.2011.03.004
[40] M. Wang, Non-constant positive steady states of the Sel′kov model, J. Differential Equa-

tions 190 (2003), no. 2, 600–620. https://doi.org/10.1016/S0022-0396(02)00100-6
[41] M. Wang and P. Y. H. Pang, Global asymptotic stability of positive steady states of

a diffusive ratio-dependent prey-predator model, Appl. Math. Lett. 21 (2008), no. 11,

1215–1220. https://doi.org/10.1016/j.aml.2007.10.026
[42] M. J. Ward and J. Wei, The existence and stability of asymmetric spike patterns for the

Schnakenberg model, Stud. Appl. Math. 109 (2002), no. 3, 229–264. https://doi.org/

10.1111/1467-9590.00223

[43] J. Wei, Pattern formations in two-dimensional Gray-Scott model: existence of single-

spot solutions and their stability, Phys. D 148 (2001), no. 1-2, 20–48. https://doi.org/

10.1016/S0167-2789(00)00183-4

[44] J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math.

Biol. 57 (2008), no. 1, 53–89. https://doi.org/10.1007/s00285-007-0146-y

[45] , Flow-distributed spikes for Schnakenberg kinetics, J. Math. Biol. 64 (2012),

no. 1-2, 211–254. https://doi.org/10.1007/s00285-011-0412-x

[46] C. Xu and J. Wei, Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-
diffusion model, Nonlinear Anal. Real World Appl. 13 (2012), no. 4, 1961–1977. https:

//doi.org/10.1016/j.nonrwa.2012.01.001

[47] L. Xu, G. Zhang, and J. F. Ren, Turing instability for a two dimensional semi-discrete
oregonator model, WSEAS Trans. Math. 10 (2011), no. 6, 201–209.

[48] G. Yang and J. Xu, Analysis of spatiotemporal patterns in a single species reaction-

diffusion model with spatiotemporal delay, Nonlinear Anal. Real World Appl. 22 (2015),
54–65. https://doi.org/10.1016/j.nonrwa.2014.07.013

[49] F. Yi, J. Wei, and J. Shi, Diffusion-driven instability and bifurcation in the Lengyel-

Epstein system, Nonlinear Anal. Real World Appl. 9 (2008), no. 3, 1038–1051. https:
//doi.org/10.1016/j.nonrwa.2007.02.005

[50] , Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-
prey system, J. Differential Equations 246 (2009), no. 5, 1944–1977. https://doi.org/

10.1016/j.jde.2008.10.024

[51] , Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system,
Appl. Math. Lett. 22 (2009), no. 1, 52–55. https://doi.org/10.1016/j.aml.2008.02.

003

[52] Y. You, Global dynamics of the Brusselator equations, Dyn. Partial Differ. Equ. 4 (2007),
no. 2, 167–196. https://doi.org/10.4310/DPDE.2007.v4.n2.a4

https://doi.org/10.1016/j.aml.2008.06.032
https://doi.org/10.1016/j.aml.2008.06.032
https://doi.org/10.1016/j.mcm.2006.03.001
https://doi.org/10.1016/j.mcm.2006.03.001
https://doi.org/10.1016/0022-5193(79)90042-0
https://doi.org/10.1016/j.jde.2008.09.009
https://doi.org/10.1016/j.jde.2008.09.009
https://doi.org/10.1016/j.jde.2011.03.004
https://doi.org/10.1016/S0022-0396(02)00100-6
https://doi.org/10.1016/j.aml.2007.10.026
https://doi.org/10.1111/1467-9590.00223
https://doi.org/10.1111/1467-9590.00223
https://doi.org/10.1016/S0167-2789(00)00183-4
https://doi.org/10.1016/S0167-2789(00)00183-4
https://doi.org/10.1007/s00285-007-0146-y
https://doi.org/10.1007/s00285-011-0412-x
https://doi.org/10.1016/j.nonrwa.2012.01.001
https://doi.org/10.1016/j.nonrwa.2012.01.001
https://doi.org/10.1016/j.nonrwa.2014.07.013
https://doi.org/10.1016/j.nonrwa.2007.02.005
https://doi.org/10.1016/j.nonrwa.2007.02.005
https://doi.org/10.1016/j.jde.2008.10.024
https://doi.org/10.1016/j.jde.2008.10.024
https://doi.org/10.1016/j.aml.2008.02.003
https://doi.org/10.1016/j.aml.2008.02.003
https://doi.org/10.4310/DPDE.2007.v4.n2.a4


BIFURCATION ANALYSIS OF A SINGLE SPECIES R-D MODEL 281

[53] , Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion sys-

tems, Commun. Pure Appl. Anal. 10 (2011), no. 5, 1415–1445. https://doi.org/10.

3934/cpaa.2011.10.1415

[54] , Dynamics of two-compartment Gray-Scott equations, Nonlinear Anal. 74

(2011), no. 5, 1969–1986. https://doi.org/10.1016/j.na.2010.11.004
[55] , Global dynamics of the Oregonator system, Math. Methods Appl. Sci. 35 (2012),

no. 4, 398–416. https://doi.org/10.1002/mma.1591

[56] , Robustness of global attractors for reversible Gray-Scott systems, J. Dynam.
Differential Equations 24 (2012), no. 3, 495–520. https://doi.org/10.1007/s10884-

012-9252-7

[57] J. Zhou and C. Mu, Pattern formation of a coupled two-cell Brusselator model, J. Math.
Anal. Appl. 366 (2010), no. 2, 679–693. https://doi.org/10.1016/j.jmaa.2009.12.021

Jun Zhou

School of Mathematics and Statistics
Southwest University

Chongqing 400715, P. R. China

Email address: jzhouwm@163.com, jzhou@swu.edu.cn

https://doi.org/10.3934/cpaa.2011.10.1415
https://doi.org/10.3934/cpaa.2011.10.1415
https://doi.org/10.1016/j.na.2010.11.004
https://doi.org/10.1002/mma.1591
https://doi.org/10.1007/s10884-012-9252-7
https://doi.org/10.1007/s10884-012-9252-7
https://doi.org/10.1016/j.jmaa.2009.12.021

