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Abstract 

 

In order to analyze the nonlinear phenomena of the bifurcation and chaos caused by the switching of nonlinear switching 
devices in inductively coupled power transfer (ICPT) systems, a Jacobian matrix model, based on discrete mapping numerical 
modeling, is established to judge the system stability of the periodic closed orbit and to study the nonlinear behavior of Hopf 
bifurcation in a system under full resonance. The general flow of the parameter design, based on the stability principle for ICPT 
systems, is proposed to avoid the chaos and bifurcation phenomena caused by unreasonable parameter selection. Firstly, based on 
the state equation of SS-type compensation, a three-dimensional bifurcation diagram with the coupling coefficient as the 
bifurcation parameter is established with a numerical simulation to observe the nonlinear phenomena in the system. Then 
Filippov’s method based on a Jacobian matrix model is adopted to deduce the boundary of stable operation and to judge the type 
of the bifurcation in the system. Then the general flow of the parameter design based on the stability principle for ICPT systems 
is proposed through the above analysis to realize stable operation under the conditions of weak coupling. Finally, an 
experimental platform is built to confirm the correctness of the numerical simulation and modeling. 

 
Key words: Coupling coefficient, Full resonance, Hopf bifurcation, Inductively coupled power transfer (ICPT) system, Jacobian 
matrix 

 

I. INTRODUCTION 

With the progress of science and technology, the traditional 
power delivery method of transporting power with cables can 
no longer meet the increased requirements in terms of 
convenience, security and intelligence of the charging mode. 
This is due to the inevitable disadvantages of cables including 
unreliable contact, the hidden danger of naked conductors 
and poor flexibility of the power supply mode. Accordingly, 
wireless power transmission technology has emerged. Based 
on electromagnetic induction theory, inductively coupled 

power transfer (ICPT) systems, which are characterized by 
large power transmission capacity and high efficiency, have 
realized safe, reliable, efficient and flexible energy transmission 
without physical connections between the power supply lines 
and power equipment [1]-[4]. In addition, it has been widely 
studied in the fields of medical equipment [5], household 
appliances [6], electric car charging [7], mobile phone [8], 
etc. 

Because of the switching of nonlinear switching devices, an 
ICPT system must be a time-varying strong nonlinear system. 
There may be phenomena like bifurcation, co-attractor and 
chaos when the system works under the conditions of weak 
coupling as well as unreasonable feedback control parameter 
design, which affect the system design [9],[10]. Although, 
linear analysis methods, such as impedance analysis [11], small 
signal modelling based on the state space average method [12], 
numerical method [13] and the generalized state space 
averaging method [14], can guide the design of a system to  
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Fig. 1. Structure diagram of an ICPT system. 

 
some extent, there are some disadvantages such as inaccurate 
modelling results and analysis of only the steady state behavior. 
Therefore, there is a need to adopt discrete mapping numerical 
modeling to study the nonlinear phenomena in ICPT systems. 

At present, deep studies on the bifurcation and chaos of 
power electronic converters have been reported. A number of 
relatively accomplished methods has been studied for the 
bifurcation and chaos phenomena in different types of power 
electronic converters. Examples of this include analyzing low 
dimensional DC/DC converters with a small signal model or 
discrete mapping model, and estimating the stability of the 
system by calculating a Jacobi matrix eigenvalue [15]; 
analyzing the fast-scale bifurcation in a power factor 
correction (PFC) converter with discrete modelling, and 
determining the stability of the system by a Jacobi matrix 
eigenvalue [16]; analyzing the multi-scale and slow-scale 
bifurcation in PFC converters with an average modelling, and 
studying the system stability by the harmonic balance method 
and Floquet theory[17]; and analyzing the multi-scale and 
fast-scale bifurcation in a voltage-type full-bridge inverter 
with an average method and a discrete method, as well as 
estimating the stability of system by a Jacobi matrix 
eigenvalue [18]. However, a few studies have been made on 
the bifurcation and chaos in ICPT systems, despite the fact 
that there are already many achievements in DC-DC 
converters. Although the authors of [10] analyzed nonlinear 
phenomena in an ICPT system based on a loose coupling 
transformer model, the stability criterion of the system has 
not been deduced. As a result, it is not possible to confirm the 
type of bifurcation or verify the causes of the low-frequency 
oscillation. 

In order to study the nonlinear phenomena in ICPT systems, 
a three-dimensional bifurcation diagram with the coupling 
coefficient as the bifurcation parameter is established with a 
numerical simulation to verify that the ICPT system does 

generate the nonlinear phenomena of bifurcation and chaos 
when nonlinear switching devices switch. Based on this 
assumption, a model is established to study the stability of the 
system and to calculate the stable operation boundary of the 
bifurcation parameter. Specifically, the ICPT system, 
characterized by autonomous segmental oscillation, is analyzed 
with discrete mapping numerical modeling and Filippov’s 
method [19] to deduce a Jacobian matrix model. Then the 
eigenvalue of the Jacobian matrix is calculated to predict the 
boundary of stable operation and the position of the 
bifurcation point of the system. Then the general flow of the 
parameter design is proposed based on the stability principle 
of the ICPT system to realize stable operation under 
reasonable parameters. Finally, an experimental platform is 
built to study waveforms of the capacitor voltage and 
inductor current under a typical coupling coefficient to verify 
the correctness of the numerical simulation and modeling. 

 

II. STRUCTURE AND WORKING MODAL ANALYSIS 

OF AN ICPT SYSTEM BASED ON SS-TYPE 

COMPENSATION 

ICPT systems based on SS-type compensation have been 
widely studied in a number of applications since its structure 
is simple and its resonant network characteristics do not 
change with the load resistance. However, in actual systems, 
due to the existence of conductor inductance and other 
parasitic inductances, the capacitor filter circuit usually turns 
into an inductor-capacitor filter circuit. Therefore, this part of 
the parasitic inductance is expressed as L in the circuit. The 
structure of an SS-type compensation ICPT system is shown 
in Fig. 1. It is mainly composed of a DC power supply, an 
inverter circuit, primary and secondary resonance compensation 
circuits, a magnetic coupling mechanism, rectifying and 
filtering circuits, a load, a wireless communication module  
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TABLE I 
SWITCHING STATES OF FULL-BRIDGE RESONANT CONVERTER 

State 1 2 3 4 5 6 

S1 on on off off on off 

S2 off off on on off on 

D2 on off off on off off 

D1 off off on on off off 

vcon & vram > > < < > < 

is > < < > = = 

 
and a PWM signal generation circuit. In Fig. 1, the primary 
and secondary resonance compensation adopt both series 
resonance compensation. 

In this figure, E is the input DC voltage source. The 
MOSFETs S1, S2, S3 and S4 form the full-bridge inverter 
circuit. Cp and Cs are the primary and secondary resonant 
capacitors, respectively. Lp and Ls are the primary and 
secondary coil inductance, respectively. M is the coupled 
inductor between the primary and secondary coils. Rp and Rs 
are the parasitic resistances of the primary and secondary coil 
inductors, respectively. The diodes D1, D2, D3 and D4 form 
the rectifier circuit. L and C form the filter circuit. R forms 
the load. 

To simplify the analysis, it is assumed that the system works 
at full resonance. In other words, the primary and secondary 
sides resonate separately and have the same frequency. At 
this time, the coupling coefficient of the primary and 
secondary sides of the system is: 

                

 (1) 

The working process is that the output voltage of the 
secondary side is sampled and then transmitted to the primary 
side through wireless communication technology. To control 
the switch tube, the signal vcon, adjusted by the proportional 
ring, is compared with the sawtooth wave signal vramp to 
generate the pulse width modulation (PWM) signal u. When 
vcon > vramp, S1 and S4 are on, and S2 and S3 are off. 
Meanwhile, when vcon < vramp, S2 and S3 are on, and S1 and 
S4 are off. Therefore, the driving waveforms of the switch 
tubes diagonally across from each other, such as S1 and S4, 
are identical, and the switching states of S1 and S2 are 
opposite. The state variables X in the equivalent circuit of an 
SS-type ICPT system are composed of inductor current and 

capacitor voltage, that is X=[vcp，vcs，vc，ip，is，iL]T. Since 

the eight switching devices in this system work in 
combination, the system has six switching states as shown in 
Table І. 

The energy conversion link, including the inverter and 
rectification, exhibits hard switching nonlinearity. To describe 
the switching nonlinearity of the energy conversion link in an 
ICPT system, two nonlinear variables s and g are defined in 
Eqn. (2). 

     

(2) 

According to the ICPT system mutual inductance coupling 
model, the system state equation based on voltage loop 
control is established in Eqn. (3). 

             (3) 

where i (i=1, 2, 3, 4, 5, 6) corresponds to the six switching 
states of the system, and Ai and Bi are specifically defined in 
Eqns. (4)-(6). 

 

  (4) 

        (5) 

   (6) 

When the system works in modes 1, 2, 3 and 4, is is not 
equal to zero, and it works in the Continuous Current Mode 
(CCM). When the system works in modes 5 and 6, is is equal 
to zero, and it works in the Discontinuous Current Mode 
(DCM). 

 

III. ANALYSIS OF NONLINEAR PHENOMENA  
IN THE SYSTEM 

Based on the mathematical model of an ICPT system 
established in section II, the nonlinear phenomena in an ICPT 
system is studied in this section from the perspective of  
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TABLE II 
MAIN CIRCUIT PARAMETERS 

Notation Value 

Input voltage E/V 30
Frequency f/kHz 10 

Coil inductance Lp &Ls /uH 115 
Compensation capacitor Cp & Cs /uF 2.2 

Parasitic resistance Rp& Rs /Ω 0.15 
Filter inductor L/mH 1.5 
Filter capacitor C/ uF 220 
Load Resistance R/Ω 10 

Scale factor G1 0.6 
Scale factor G2 0.4 

Reference voltage vref/V 20 
Upper saturation boundary value of vref vH/V 8 
Lower saturation boundary value of vref vL/V 2 

Coupling coefficient k (0.2, 0.85) 

 

 

     (a)   (b) 

Fig. 2. Bifurcation diagram with the coupling coefficient k as a 
bifurcation parameter. (a) Three-dimensional bifurcation diagram 
with the coupling coefficient k as a bifurcation parameter. (b) 
Poincare section diagram under typical coupling coefficients k.  
 

 

 
Fig. 3. Simulation diagram of an ICPT system based on SS-type compensation. 

 
numerical simulation and theoretical modeling. Firstly, a 
three-dimensional bifurcation diagram with the coupling 
coefficient as the bifurcation parameter is established with a 
numerical simulation to observe the influence of the coupling 
coefficient on the stability of an ICPT system. Then a 
Jacobian matrix model is deduced with discrete mapping 
numerical modeling and Filippov’s method to determine the 
stability of the system periodic closed orbit. Finally, the 
modeling results are compared with the numerical simulation 
results to verify the correctness of the model. 

A. Numerical Simulation 

In order to analyze the nonlinear phenomena in an ICPT 
system, the system parameters are shown in Table II. A large 
value of the filter inductance value is taken here to observe the 
influence of the filter inductor on the nonlinear phenomena in 
an ICPT system under different coupling conditions. 

Numerical simulations are carried out based on Eqns. 
(3)-(5).The system bifurcation diagram, shown in Fig. 2(a), 
takes the coupling coefficient k as the bifurcation parameter. 

In Fig. 2, vc is the output voltage after the nth iteration, and iL 
is the filter inductor current after the nth iteration.  

Furthermore, the simulation diagram shown in Fig. 3 and 
the system parameters shown in Table II are adopted to 
simulate the working condition of a system under different 
coupling coefficient in MATLAB/Simulink. 

It can be seen from Fig. 2(a) that when the coupling 
coefficient k is not less than 0.79, the system works in the 
stable state. Meanwhile, when k is between 0.6 and 0.79, a 
low-frequency oscillation whose frequency is much smaller 
than the switching frequency occurs in the system. Furthermore, 
when k is less than 0.6, the duty ratio reaches the lower limit 
of saturation, the degree of severe toroidal ruptures and a 
boundary collision occurs. Therefore, k=0.79 is the stable 
operating boundary of the system, and k=0.6 is the boundary 
where a boundary collision occurs. To clearly describe the 
system operating status, Fig. 2(b) shows a sampling phase 
diagram (Poincare section diagram) under typical coupling 
coefficients of 0.79, 0.6 and 0.5, where k=0.5 is chosen to 
show that the phenomenon of a low-frequency oscillation in  
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(a)       (b)  
Fig. 4. Circuit simulation waveforms under typical coupling 
coefficient k. (a) Waveforms of vc. (b) Waveforms of iL. 
 
the system is intensified with a decreased coupling coefficient 
k. Therefore, k=0.79, 0.6 and 0.5 are chosen as typical 
coupling coefficients to study the nonlinear behavior in the 
system. 

Simulation results are shown in Fig. 4. Waveforms of the 
output voltage and filter inductor current under typical coupling 
coefficient are shown in Fig. 4(a) and Fig. 4(b), respectively. 

It can be clearly seen from Fig. 2 and Fig. 4 that the 
specific process of the system state changing with decreases 
of the coupling coefficient k is described as follows. 

When k is between 0.79 and 0.85, the system works in the 
cycle one orbit, and the sequence of the states for the 
switching cycle is 1→2→3→4→1. 

When k is between 0.6 and 0.78, a low-frequency 
oscillation phenomenon occurs at the filter inductor current 
and output voltage. The frequency of the oscillation is about 
one percent of the switching frequency. A Poincare section of 
the system is distributed in a ring. According to the nonlinear 
dynamics theory [18], the system is in a quasi-periodic state 
and generates low-frequency bifurcation. 

When k is less than 0.6, the system continues working in 
an unstable state, the duty ratio reaches the lower limit of 
saturation, the degree of low-frequency oscillation is deepened, 
the phenomena of severe toroidal rupture and boundary 
collision occurs. At this time, the ripples of vc and iL reach 6V 
and 8A, respectively. In addition, the system enters the DCM 
mode. 

B. Modeling and Stability Analysis of the System 

It can be seen from section IIIA that an ICPT system 
generates the phenomenon of a low-frequency oscillation when 
the coupling coefficient is less than 0.79. Therefore, this 
section theoretically models the system and analyzes the 
causes of the oscillations. Firstly, the system is analyzed with 
discrete mapping numerical modeling and Filippov’s method to 
deduce a Jacobian matrix model. Discrete mapping numerical 
modeling can be adopted to analyze the dynamic behavior of 
the switching frequency scale of the system and to determine 
the stability of the system since it is completely closed to actual 
circuit system operation. Filippov’s method, which has been 
commonly applied to mechanical switching systems, can be 
used fruitfully in power electronic circuits to describe the 
nonlinear behavior of the system during switchings. It is 

possible to describe the stability of power electronic converters 
by combining Filippov’s method and Floquet theory. Then the 
eigenvalue of a Jacobian matrix is calculated to predict the 
boundary of stable operation and the position of the bifurcation 
point of the system. Finally, the established Jacobian matrix 
model lays the foundation for the parameters design process of 
the system. 

The status equations of the system have been established 
according to the analysis in section II. The following adopts 
sawtooth periodic sampling to construct the model, where i 
(i=1, 2, 3, 4, 5 and 6) correspond to the six kinds of switch 
states of the system. To simplify the modeling results, the 
state differential equation is constructed as Eqn. (7). 

        (7) 

where， , ti represents the time of each state,  

represents the state variable of the system at different switch 
states, and I represents the six-order unit array. 

Simplifying Eqn. (7) yields: 

      (8) 

The iterative equation is constructed as Eqn. (9). 

(9) 

The fixed point XQ represents the state variable of the 
system working in the steady state, and the switching point 
XDi represents the state variable of the system at the time of 
switching. The calculations of XQ and XDi are obtained by Eqn. 
(10). 

 (10) 

When the system works in a stable cycle one state, the 
fixed point XQ of Eqn. (10) is stable. At this time, the 
switching order of the system state is 1→2→3→4→1. To 
calculate the time of each state in one switching cycle, the 
switching conditions are deduced by the values of uc and iL at 
the moment of switching as follows: 

    (11) 

where hi represents the condition change from state i to state 

i+1, . 

In addition, G1, G2, vH and vL have already been defined in 
Table II. 

According to Filippov’s method, the discrete Jacobian 
matrix can be expressed as Eqn. (12). 
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TABLE III 
MAXIMUM EIGENVALUE OF JACOBIAN MATRIX CHANGES  

WITH THE PARAMETER K  

Coupling 
coefficient k 

Maximum feature 
multiplier 

System 
status 

0.83 0.9196±0.3467j Stable 

0.82 0.9239±0.3462j Stable 

0.81 0.9286±0.3458j Stable 

0.80 0.9320±0.3455j Stable 

0.79 0.9379±0.3451j Stable 

0.78 0.9431±0.3444j Hopf bifurcation 

0.77 0.9487±0.3438j 
Low frequency 

oscillation

 
where . In addition, 

Si represents the jump matrix, which can be obtained as 
follows: 

 

where XD(i+1) represents the state variable of the next 
switching moment. 

According to Floquet theory, the stability of the periodic 
closed-loop is depend on the maximum of Jacobian matrix’s 
eigenvalues. In addition, the characteristic equation defined 
by Floquet theory can be expressed as Eqn. (13). 

                   (13) 

According to the numerical simulation results, the 
phenomenon of a low-frequency oscillation occurs around 
k=0.78. Therefore, the eigenvalues of the Jacobian matrix of 
the system are specially analyzed around the coupling 
coefficient k=0.78. The maximum of the eigenvalues under 
different coupling coefficients are shown in Table III. 

It is shown in Table III that when the coupling coefficient k, 
which is the bifurcation parameter, is not less than 0.79, the 
Jacobin matrix eigenvalues at the fixed point XQ are located 
within the unit circle. This means that the system works in a 
stable domain. Then the maximum eigenvalue of the Jacobian 
matrix crosses out of the unit circle along the complex plane 
with a decrease of the coupling coefficient k. This indicates 
that Hopf bifurcation occurs in the system at this time. 
According to the authors of [20], when Hopf bifurcation 
occurs in a system, the periodic fixed point of the system 
loses its stability and the motion of the system changes from 
a fixed point to a limit cycle. In addition, the state variable of 
the system generates a low-frequency oscillation. This low 
frequency oscillation increases both the ripple of the system 
output and the system switching stress, which results in 
increased losses and reduced performance. 

According to the above analysis, the phenomenon of a 
low-frequency oscillation in the system is caused by Hopf 
bifurcation. At the same time, according to the authors of [19],  

 
Fig. 5. Stable domain of the system. 
 
different values of the parameter affect the stable operation of 
the system and cause nonlinear phenomena in the system. In 
order to clearly observe this nonlinear phenomenon, the value 
of the filter inductor is made extremely large, which is quite 
different from actual operation. 

Therefore, the coupling coefficient and the filter inductance 
are studied as variables to observe the influence of the filter 
inductor value on the nonlinear behavior of the system under 
different coupling conditions. The value of the filter inductor 
is made to range from 10nH to 10mH. 

According to Eqn. (12), the eigenvalues of the Jacobian 
matrix are calculated by MATLAB. In the parameter domain 
shown in Fig. 5, the points whose eigenvalues lying in the 
unit circle are shown in the shaded part of the figure. The 
shaded part constitutes the stable domain of the parameter. 

It can be seen from Fig. 5 that the stability range of the 
system in decreases with an increase of the filter 

inductance value. This indicates that although different values 
of the filter inductance affect the position of the bifurcation 
point of the system, the Hopf bifurcation phenomenon does 
not disappear with a decrease of the filter inductance value. 
Therefore, the value of the filter inductance does not affect 
the analysis of the Hopf bifurcation phenomenon. 

Thus, a method of suppressing the Hopf bifurcation 
phenomenon is studied by analyzing the other parameters in 
the system. 

 

IV. METHOD OF ICPT SYSTEM PARAMETER DESIGN 

The numerical simulation in section IIIA verifies that the 
ICPT system generates a low-frequency oscillation when a 
nonlinear switching device is working and the parameter 
selection is unreasonable. The eigenvalues of the Jacobian 
matrix model, deduced through theoretical modeling in 
section IIIB, determine the stability of the system periodic 
closed orbit. According to the analysis above, when the 
coupling coefficient is lower than 0.79, the system enters an 
unstable state and the stability domain is small. In addition, 
the system circuit structure and main circuit parameters have 
been determined. Therefore, a parameter design method is 
proposed here to make a system under the weak coupling 
condition work in the stable state by modifying the feedback 
loop proportional coefficients G1 and G2 without changing  
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Fig. 6. Stable domain of filter inductor current. (a) Stable domain 
in the G1-G2-k phase space. (b) Stable domain in G1-G2 under 
k=0.79. (c) stable domain in G1-G2 under k=0.2. 
 

 
Fig. 7. Flow chart of the proposed parameter design based on the 
stability principle for an ICPT system. 

 
the structure or main circuit parameters of the system. The 
parameters G1 and G2 can be determined by the stable domain 
of the system, which are calculated by a combination of Eqns. 
(10)-(12). 

As shown in Fig. 6(a), the stable domain (shaded part) is 
obtained by a MATLAB numerical simulation with the 
parameters shown in Table II, where G1=0.6 and G2=0.4. It 
should be noted that the color of the graph has no practical 
meaning. Fig. 6(b) shows the stable interval of the filter 
inductor current in the G1-G2 region under k=0.79. In addition, 
the system works in the stable domain at this time. Fig. 6(c) 
shows the stable interval with k=0.2. The system is unstable 
at this time. Consequently, according to the conclusions above, 
which are consistent with the numerical simulation, it is 
possible to change the feedback loop proportional coefficient 
as G1=0.22 and G2=0.81 to make the system work in the 
stable state under weak coupling conditions. 

When the ICPT system is designed, the circuit parameters 
such as the self-inductance, mutual inductance, compensation 
capacitance, filter inductance, filter capacitor, etc. of the main 
circuit can be determined according to the actual situation. 

However, the feedback loop parameters are not easily 
determined. The parameter design method proposed here can 
be realized by modifying the feedback loop parameters or by 
adopting other control methods to achieve stable operation of 
the system within certain parameters (such as a low coupling 
coefficient). Therefore, the specific parameter design flow of 
an ICPT system is shown in Fig. 7. 

To ensure that the system can work stably under certain 
conditions, the uncertain parameters, such as the feedback 
loop parameters, can be chosen from the stable interval, 
which is obtained by the numerical simulations of Eqns. 
(10)-(12) based on a MATLAB simulation according to the 
theoretical analysis in section IIIA. Since it is impossible to 
change the determined parameters such as the main circuit 
parameters, the system is forced into the stable state by 
adopting corresponding control methods, which include the 
time delay feedback control strategy, the PID nonlinear 
control strategy, the self-stabilizing chaos control strategy, 
etc. However, the system characteristics at this time are also 
changed too. Thus, no detailed study is done here. 

 

V. EXPERIMENTAL VERIFICATION 

In order to verify the correctness of the above nonlinearity 
analysis, a system experimental platform with an inverter 
operating frequency of 10kHz is built, as shown in Fig. 8, 
based on the circuit structure of Fig. 1 and the parameters in 
Table II. The state variables of the system under typical 
coupling coefficients are observed to verify the correctness of 
both the simulation and the modeling. In the experimental 
platform, the output voltage vc is sampled by the voltage 
sampling module based on Hall sensors. In order to simplify 
the experimental process, the voltage sampling signal is 
directly fed back to the DSP to generate the pulse modulation 
signal of the switching tube. 

A phase diagram is drawn to replace the Poincare section 
since Poincare sections are difficult to obtain during 
experiments. Fig. 9, Fig. 10 and Fig. 11 show experimental 
waveforms of the system with coupling coefficients of 0.79, 
0.6 and 0.5, respectively. Fig. 9(a), Fig. 10(a) and Fig. 11(a) 
represent phase diagrams of vc and iL. Fig. 9(b), Fig. 10(b) 
and Fig. 11(b) show waveforms of the output voltage vc, with 
time intervals of 50us, 1ms and 500us, respectively. Fig. 9(c), 
Fig. 10(c) and Fig. 11(c) show waveforms of the filter 
inductance current iL, with time intervals of 50us, 500us and 
500us, respectively. In addition, Simulink/FFT is used to 
analyze various oscillation frequencies of iL in the system 
under different coupling coefficients, and they are shown in 
Fig. 9(d), Fig. 10(d) and Fig. 11(d). 

It can be seen from Fig. 9 that the system works in the stable 
state with k=0.79. It can also be seen that the output voltage is 
24V, the output voltage ripple is small, less than 1%, and the 
inductor current ripple is small, 1A. According to Fig. 9(d), 
the main harmonic frequency is 10kHz. The quantization error  
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Fig. 8. Experimental platform of the system. 

 

   
(a)  (b) 

   

(c)        (d) 
Fig. 9. Experimental waveforms of the system with k=0.79. (a) 
Phase diagram of iL-vc. (b) Time domain diagram of vc. (c) Time 
domain diagram of iL. (d) Results of a FFT analysis of iL. 
 

of the sampling, digital calculation and PWM link are the main 
reasons for the increase of the experimental waveform ripple. 

According to Fig. 10, when k decreases to 0.6, waveforms 
of vc and iL oscillate at a low frequency. Fig. 10(a) shows that 
the limit loop oscillates at this time. According to Fig. 10(b) 
and Fig. 10(c), the average of the output voltage decreases to 
22.5V, the voltage ripple is 5V, and the current ripple is 5A. 
The system generates low-frequency oscillation phenomena 
at this point, and the frequency of the oscillation is about one 
eighth the switching frequency, which is roughly the same as 
the result of Fig. 10(d). 

According to Fig. 11, when k decreases to 0.5, the inductor 
current decreases to zero, the limit cycle oscillates severely, 
the torus enlarges. In addition, boundary collision and severe 
toroidal rupture occur. The system enters the DCM mode. 
The ripples of vc and iL are 8V and 7.2A. respectively. In 
addition, the low-frequency oscillation of the system becomes  

    

(a)        (b) 

   

(c)        (d) 
Fig. 10. Experimental waveforms of the system with k=0.6. (a) 
Phase diagram of iL-vc. (b) Time domain diagram of vc. (c) Time 
domain diagram of iL. (d) Results of a FFT analysis of iL. 

 

   
(a)        (b) 

  

(c)        (d) 
Fig. 11. Experimental waveforms of the system with k=0.5. (a) 
Phase diagram of iL-vc. (b) Time domain diagram of vc. (c) Time 
domain diagram of iL. (d) Results of a FFT analysis of iL. 

 
more serious. The frequency of the oscillation is about one- 
fifteenth that of the switching frequency, which is roughly the 
same as the result of Fig. 11(d). 

According to the analysis in section IV, the feedback loop 
proportional coefficients G1=0.22 and G2=0.81 can be 
changed to make the system work in the stable state when 
k=0.2. 

Therefore, an experiment is carried out to verify its 
correctness with the parameters k=0.2, G1=0.22 and G2=0.81. 
Waveforms of the output voltage vc and the filter inductance 
current iL are given in Fig. 12. 
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(a)        (b) 

  

(c)        (d) 
Fig.12. Experimental waveforms of the system with k=0.2, 
G1=0.22 and G2=0.81. (a) Phase diagram of iL-vc. (b) Time 
domain diagram of vc. (c) Time domain diagram of iL. (d) 
Results of a FFT analysis of iL.  
 

It can be seen from Fig. 12 that the system can still work in 
the stable state with k=0.2, G1=0.22 and G2=0.81, which is 
consistent with the simulation results. 

According to the experimental results above, it can be seen 
that improper design of the system parameters results in Hopf 
bifurcation of a system under weak coupling conditions. It can 
also be seen that Hopf bifurcation generates low-frequency 
oscillation of the system. Experimental waveforms of vc and 
iL correspond to the simulations, which further verified the 
correctness of the numerical simulation and theoretical modeling. 

 

VI. CONCLUSION 

In order to study the Hopf bifurcation in ICPT systems, 
discrete mapping numerical modeling and Filippov’s method 
are adopted to deduce a Jacobian matrix model, whose 
eigenvalues determine the boundary of the stable operation of 
the system. Then the general flow of the parameter design is 
proposed based on the stability principle of an ICPT system. 
This is done to realize stable operation under the condition of 
a weak coupling by changing the feedback loop parameters. 
The modeling can do a good job of describing the evolution 
of the system’s transient behavior. In addition, it has value for 
the study of the low-frequency oscillation behavior and 
parameter design of ICPT systems. Finally, an experimental 
platform is built to verify the correctness of the numerical 
simulation and modeling. 

However, the shortcoming of this paper is that the control 
method adopted in this paper is a PWM control method, which 
may cause some undesirable issues, such as the loss of ZVS 
operation. In this case, a low resonant frequency of 10 kHz is 
used in this paper to reduce the switching loss. Therefore, other 
control methods, such as the phase shift control method need 

to be studied in the future. 
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