• 제목/요약/키워드: biderivation

검색결과 6건 처리시간 0.024초

SOME STUDIES ON JORDAN (𝛼, 1)* -BIDERIVATION IN RINGS WITH INVOLUTION

  • SK. HASEENA;C. JAYA SUBBA REDDY
    • Journal of Applied and Pure Mathematics
    • /
    • 제6권1_2호
    • /
    • pp.13-20
    • /
    • 2024
  • Let R be a ring with involution. In the present paper, we characterize biadditive mappings which satisfies some functional identities related to symmetric Jordan (𝛼, 1)*-biderivation of prime rings with involution. In particular, we prove that on a 2-torsion free prime ring with involution, every symmetric Jordan triple (𝛼, 1)*-biderivation is a symmetric Jordan (𝛼, 1)*-biderivation.

ORTHOGONAL GENERALIZED SYMMETRIC REVERSE BIDERIVATIONS IN SEMI PRIME RINGS

  • V.S.V. KRISHNA MURTY;C. JAYA SUBBA REDDY
    • Journal of Applied and Pure Mathematics
    • /
    • 제6권3_4호
    • /
    • pp.155-165
    • /
    • 2024
  • Let R be a semi-prime ring. Let [δ1, D1] and [δ2, D2] be two generalized symmetric reverse biderivations of R with associated reverse biderivations D1 and D2. The main aim of the present paper is to establish conditions of orthogonality for symmetric reverse biderivations and symmetric generalized reverse biderivations in R.

On *-bimultipliers, Generalized *-biderivations and Related Mappings

  • Ali, Shakir;Khan, Mohammad Salahuddin
    • Kyungpook Mathematical Journal
    • /
    • 제51권3호
    • /
    • pp.301-309
    • /
    • 2011
  • In this paper we dene the notions of left *-bimultiplier, *-bimultiplier and generalized *-biderivation, and to prove that if a semiprime *-ring admits a left *-bimultiplier M, then M maps R ${\times}$ R into Z(R). In Section 3, we discuss the applications of theory of *-bimultipliers. Further, it was shown that if a semiprime *-ring R admits a symmetric generalized *-biderivation G : R ${\times}$ R ${\rightarrow}$ R with an associated nonzero symmetric *-biderivation R ${\times}$ R ${\rightarrow}$ R, then G maps R ${\times}$ R into Z(R). As an application, we establish corresponding results in the setting of $C^*$-algebra.

APPROXIMATE BIHOMOMORPHISMS AND BIDERIVATIONS IN 3-LIE ALGEBRAS: REVISITED

  • Shin, Dong Yun;Lee, Jung Rye;Seo, Jeong Pil
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권2호
    • /
    • pp.99-107
    • /
    • 2017
  • Shokri et al. [14] proved the Hyers-Ulam stability of bihomomorphisms and biderivations by using the direct method. It is easy to show that the definition of biderivations on normed 3-Lie algebras is meaningless and so the results of [14] are meaningless. In this paper, we correct the definition of biderivations and the statements of the results in [14], and prove the corrected theorems.

ON THE INDEX AND BIDERIVATIONS OF SIMPLE MALCEV ALGEBRAS

  • Yahya, Abdelaziz Ben;Boulmane, Said
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.385-397
    • /
    • 2022
  • Let (M, [ , ]) be a finite dimensional Malcev algebra over an algebraically closed field 𝔽 of characteristic 0. We first prove that, (M, [ , ]) (with [M, M] ≠ 0) is simple if and only if ind(M) = 1 (i.e., M admits a unique (up to a scalar multiple) invariant scalar product). Further, we characterize the form of skew-symmetric biderivations on simple Malcev algebras. In particular, we prove that the simple seven dimensional non-Lie Malcev algebra has no nontrivial skew-symmetric biderivation.

SKEW n-DERIVATIONS ON SEMIPRIME RINGS

  • Xu, Xiaowei;Liu, Yang;Zhang, Wei
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1863-1871
    • /
    • 2013
  • For a ring R with an automorphism ${\sigma}$, an n-additive mapping ${\Delta}:R{\times}R{\times}{\cdots}{\times}R{\rightarrow}R$ is called a skew n-derivation with respect to ${\sigma}$ if it is always a ${\sigma}$-derivation of R for each argument. Namely, if n - 1 of the arguments are fixed, then ${\Delta}$ is a ${\sigma}$-derivation on the remaining argument. In this short note, from Bre$\check{s}$ar Theorems, we prove that a skew n-derivation ($n{\geq}3$) on a semiprime ring R must map into the center of R.