APPROXIMATE BIHOMOMORPHISMS AND BIDERIVATIONS IN 3-LIE ALGEBRAS: REVISITED

Dong Yun Shin ${ }^{\text {a }}$, Jung Rye Lee ${ }^{\text {b,* }}$ and Jeong Pil Seo ${ }^{\text {c }}$

Abstract

Shokri et al. [14] proved the Hyers-Ulam stability of bihomomorphisms and biderivations by using the direct method.

It is easy to show that the definition of biderivations on normed 3-Lie algebras is meaningless and so the results of [14] are meaningless.

In this paper, we correct the definition of biderivations and the statements of the results in [14], and prove the corrected theorems.

1. Introduction and Preliminaries

A normed (Banach) Lie triple system is a normed (Banach) space $(A,\|\cdot\|)$ with a trilinear mapping $(x, y, z) \mapsto[x, y, z]$ from $A \times A \times A$ to A satisfying the following axioms:

$$
\begin{aligned}
{[x, y, z] } & =-[y, x, z] \\
{[x, y, z] } & =-[y, z, x]-[z, x, y], \\
{[u, v,[x, y, z]] } & =[[u, v, x], y, z]+[x,[u, v, y], z]+[x, y,[u, v, z]], \\
\|[x, y, z]\| & \leq\|x\|\|y\|\|z\|
\end{aligned}
$$

for all $u, v, x, y, z \in A$. The concept of Lie triple system was introduced by Lister [8] (see [6]).

Let A and B be normed Lie triple systems. A \mathbb{C}-linear mapping $H: A \rightarrow B$ is called a homomorphism if it satisfies

$$
H([x, y, z])=[H(x), H(y), H(z)]
$$

for all $x, y, z \in A$. A \mathbb{C}-linear mapping $\delta: A \rightarrow A$ is called a derivation if it satisfies

$$
\delta([x, y, z])=[\delta(x), y, z]+[x, \delta(y), z]+[x, y, \delta(z)]
$$

[^0]for all $x, y, z \in A$ (see $[9,14])$.
Definition 1.1 ([14]). Let A be a normed Lie triple system. A \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ is called a biderivation if it satisfies
\[

$$
\begin{aligned}
\delta([x, y, z], w) & =[\delta(x, w), y, z]+[x, \delta(y, w), z]+[x, y, \delta(z, w)], \\
\delta(x,[y, z, w], w) & =[\delta(x, y), z, w]+[y, \delta(x, z), w]+[y, z, \delta(x, w)]
\end{aligned}
$$
\]

for all $x, y, z, w \in A$.
The w-variable of the left side in the first equality is \mathbb{C}-linear and the x-variable of the left side in the second equality is \mathbb{C}-linear. But the w-variable of the right side in the first equality is not \mathbb{C}-linear and the x-variable of the right side in the second equality is not \mathbb{C}-linear. Thus we correct the definition of biderivation as follows.

Definition 1.2. Let A be a normed Lie triple system. A \mathbb{C}-bilinear mapping δ : $A \times A \rightarrow A$ is called a biderivation if it satisfies

$$
\begin{aligned}
\delta([x, y, z], w) & =[\delta(x, w), y, z]+\left[x, \delta\left(y, w^{*}\right), z\right]+[x, y, \delta(z, w)], \\
\delta(x,[y, z, w], w) & =[\delta(x, y), z, w]+\left[y, \delta\left(x^{*}, z\right), w\right]+[y, z, \delta(x, w)]
\end{aligned}
$$

for all $x, y, z, w \in A$.
The stability problem of functional equations originated from a question of Ulam [15] concerning the stability of group homomorphisms. Hyers [7] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Th.M. Rassias [11] for linear mappings by considering an unbounded Cauchy difference. J.M. Rassias [10] followed the innovative approach of the Th.M. Rassias theorem in which he replaced the factor $\|x\|^{p}+\|y\|^{p}$ by $\|x\|^{p}\|y\|^{p}$ for $p, q \in \mathbb{R}$ with $p+q \neq 1$. The stability problems of various functional equations have been extensively investigated by a number of authors (see $[3,4,5,12,13]$).

All the mappings T and δ, given in [14, Sections 2 and 4], satisfy the bi-additive functional equation (1.2) in [14]. Letting $x=z=0$ in (1.2), we get $f(y, w)=0$ for all y, w. So the results of [14, Sections 2 and 4] are meaningless.

In this paper, we will replace the equation (1.2), given in [14], by

$$
\begin{align*}
& f(x+y, z+w)+f(x+y, z-w)+f(x-y, z+w)+f(x-y, z-w) \tag{1}\\
& =4 f(x, z) .
\end{align*}
$$

Furthermore, we correct the statements of the results in [14, Sections 2 and 4], and prove the corrected theorems.

2. Hyers-Ulam Stability of the Functional Equation (1) in Banach Spaces

Throughout this section, assume that A is a normed space and B is a Banach space.

For a given mapping $f: A \times A \rightarrow B$, we define

$$
\begin{aligned}
& E_{\lambda, \mu} f(x, y, z, w)=f(\lambda x+\lambda y, \mu z+\mu w)+f(\lambda x+\lambda y, \mu z-\mu w) \\
& \quad+f(\lambda x-\lambda y, \mu z+\mu w)+f(\lambda x-\lambda y, \mu z-\mu w)-4 \lambda \mu f(x, z)
\end{aligned}
$$

for all $x, y, z, w \in A$ and all $\lambda, \mu \in \mathbb{T}^{1}:=\{\nu \in \mathbb{C}:|\nu|=1\}$.
From now on, assume that $f(0, z)=f(x, 0)=0$ for all $x, z \in A$.
We need the following lemmas to obtain the main results.
Lemma 2.1 ([2]). Let $f: A \times A \rightarrow B$ be a bi-additive mapping such that $f(\lambda x, \mu y)=$ $\lambda \mu f(x, y)$ for all $x, y \in A$ and all $\lambda, \mu \in \mathbb{T}^{1}$. Then the mapping $f: A \times A \rightarrow B$ is \mathbb{C}-bilinear.

Lemma 2.2. Let $f: A \times A \rightarrow B$ be a mapping satisfying $E_{\lambda, \mu} f(x, y, z, w)=0$ for all $x, y, z, w \in A$ and all $\lambda, \mu \in \mathbb{T}^{1}$. Then the mapping $f: A \times A \rightarrow B$ is \mathbb{C}-bilinear.

Proof. Let $\lambda=\mu=1, y=x$ and $w=0$. Then $2 f(2 x, z)=4 f(x, z)=0$ for all $y, z \in A$. Let $\lambda=\mu=1$ and $w=0$. Then $2 f(x+y, z)+2 f(x-y, z)=4 f(x, z)=0$ for all $x, y, z \in A$. Let $x_{1}=x+y$ and $x_{2}=x-y$. Then $2 f\left(x_{1}, z\right)+2 f\left(x_{2}, z\right)=$ $4 f\left(\frac{x_{1}+x_{2}}{2}, z\right)=2 f\left(x_{1}+x_{2}, z\right)$ and so f is additive in the first variable.

Similarly, one can show that f is additive in the second variable.
Letting $y=w=0$, we get $4 f(\lambda x, \mu z)=4 \lambda \mu f(x, z)$ for all $x, z \in A$. By Lemma 2.1, the mapping f is \mathbb{C}-bilinear.

Theorem 2.3. Let $f: A \times A \rightarrow B$ be a mapping for which there exists a function $\varphi: A^{4} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\left\|E_{\lambda, \mu} f(x, y, z, w)\right\| \leq \varphi(x, y, z, w), \tag{2}\\
\Phi(x, y, z, w):=\frac{1}{4} \sum_{n=0}^{\infty} \frac{1}{4^{n}} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z, 2^{n} w\right)<\infty
\end{gather*}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique \mathbb{C}-bilinear mapping $T: A \times A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x, z)-T(x, z)\| \leq \Phi(x, x, z, z) \tag{3}
\end{equation*}
$$

for all $x, z \in A$.
Proof. Letting $\lambda=\mu=1, y=x$ and $w=z$ in (2), we get

$$
\begin{equation*}
\|f(2 x, 2 z)-4 f(x, z)\| \leq \varphi(x, x, z, z) \tag{4}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left\|f(x, z)-\frac{1}{4} f(2 x, 2 z)\right\| \leq \frac{1}{4} \varphi(x, x, z, z) \tag{5}
\end{equation*}
$$

for all $x, z \in A$.
It follows from (5) that

$$
\begin{equation*}
\left\|\frac{1}{4^{l}} f\left(2^{l} x, 2^{l} z\right)-\frac{1}{4^{m}} f\left(2^{m} x, 2^{m} z\right)\right\| \leq \sum_{j=l}^{m-1} \frac{1}{4^{j+1}} \varphi\left(2^{j} x, 2^{j} x, 2^{j} z, 2^{j} z\right) \tag{6}
\end{equation*}
$$

for all $x, z \in A$ and all nonnegative integers m, l with $m>l$. This implies that the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right)\right\}$ is a Cauchy sequence for all $x, z \in A$. Since A is complete, the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right)\right\}$ converges. Thus one can define the mapping $T: A \times A \rightarrow A$ by

$$
T(x, z):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right)
$$

for all $x, z \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (6), we get (3).

By the definition of the mapping T, we have

$$
\begin{aligned}
\left\|E_{\lambda, \mu} T(x, y, z, w)\right\| & =\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|E_{\lambda, \mu} f\left(2^{n} x, 2^{n} y, 2^{n} z, 2^{n} w\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{4^{n}} \varphi\left(2^{n} x, 2^{n} y, 2^{n} z, 2^{n} w\right)=0
\end{aligned}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. By Lemma 2.2, the mapping $T: A \times A \rightarrow A$ is \mathbb{C}-bilinear.

Let $T^{\prime}: A \times A \rightarrow A$ be another \mathbb{C}-bilinear mapping satisfying (3). Then we have

$$
\begin{aligned}
\left\|T(x, z)-T^{\prime}(x, z)\right\|= & \frac{1}{4^{n}}\left\|T\left(2^{n} x, 2^{n} z\right)-T^{\prime}\left(2^{n} x, 2^{n} z\right)\right\| \\
\leq & \frac{1}{4^{n}}\left\|T\left(2^{n} x, 2^{n} z\right)-f\left(2^{n} x, 2^{n} z\right)\right\| \\
& +\frac{1}{4^{n}}\left\|f\left(2^{n} x, 2^{n} z\right)-T^{\prime}\left(2^{n} x, 2^{n} z\right)\right\| \\
\leq & 2 \frac{1}{4^{n}} \Phi\left(2^{n} x, 2^{n} x, 2^{n} z, 2^{n} z\right),
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x, z \in A$. This proves the uniqueness of T.
Therefore, the mapping $T: A \times A \rightarrow A$ is a unique \mathbb{C}-bilinear mapping satisfying (3), as desired.

Theorem 2.4. Let $f: A \times A \rightarrow B$ be a mapping for which there exists a function $\varphi: A^{4} \rightarrow[0, \infty)$ satisfying (2) and

$$
\Phi(x, y, z, w):=\frac{1}{4} \sum_{n=1}^{\infty} 4^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}, \frac{w}{2^{n}}\right)<\infty
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique \mathbb{C}-bilinear mapping $T: A \times A \rightarrow B$ such that

$$
\|f(x, z)-T(x, z)\| \leq \Phi(x, x, z, z)
$$

for all $x, z \in A$.
Proof. It follows from (4) that

$$
\left\|f(x, z)-4 f\left(\frac{x}{2}, \frac{z}{2}\right)\right\| \leq \varphi\left(\frac{x}{2}, \frac{x}{2}, \frac{z}{2}, \frac{z}{2}\right)
$$

for all $x, z \in A$.
The rest of the proof is similar to the proof of Theorem 2.3.

3. Hyers-Ulam Stability of Biderivations on Banach Lie Triple Systems

Throughout this section, assume that A is a Banach Lie triple system.
In this section, we prove the Hyers-Ulam stability of biderivations on Banach Lie triple systems.

Theorem 3.1. Let θ and p be positive real numbers with $p<\frac{1}{2}$ and let $f: A \times A \rightarrow A$ be a mapping such that

$$
\begin{equation*}
\left\|E_{\lambda, \mu} f(x, y, z, w)\right\| \leq \theta\|x\|^{p}\|y\|^{p}\|z\|^{p}\|w\|^{p} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \left\|f([x, y, z], w)-[f(x, w), y, z]-\left[x, f\left(y, w^{*}\right), z\right]-[x, y, f(z, w)]\right\| \tag{8}\\
& \quad+\left\|f(x,[y, z, w])-[f(x, y), z, w]-\left[y, f\left(x^{*}, z\right), w\right]-[y, z, f(x, w)]\right\| \\
& \quad \leq \theta\|x\|^{p}\|y\|^{p}\|z\|^{p}\|w\|^{p}
\end{align*}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. If the mapping $f: A \times A \rightarrow A$ satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right)=\lim _{n \rightarrow \infty} \frac{1}{16^{n}} f\left(8^{n} x, 2^{n} z\right)=\lim _{n \rightarrow \infty} \frac{1}{16^{n}} f\left(2^{n} x, 8^{n} z\right) \tag{9}
\end{equation*}
$$

for all $x, z \in A$, then there exists a unique biderivation $\delta: A \times A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-\delta(x, z)\| \leq \frac{\theta}{4-4^{2 p}}\|x\|^{2 p}\|z\|^{2 p} \tag{10}
\end{equation*}
$$

for all $x, z \in A$.
Proof. Letting $\varphi(x, y, z, w):=\theta\|x\|^{p}\|y\|^{p}\|z\|^{p}\|w\|^{p}$ in Theorem 2.3, we get a unique \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ given by $\delta(x, z):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right)$ satisfying (10).

It follows from (8) and (9) that

$$
\begin{aligned}
& \left\|\delta([x, y, z], w)-[\delta(x, w), y, z]-\left[x, \delta\left(y, w^{*}\right), z\right]-[x, y, \delta(z, w)]\right\| \\
& \quad+\left\|\delta(x,[y, z, w])-[\delta(x, y), z, w]-\left[y, \delta\left(x^{*}, z\right), w\right]-[y, z, \delta(x, w)]\right\| \\
& \quad=\lim _{n \rightarrow \infty} \frac{1}{16^{n}}\left(\| f\left(8^{n}[x, y, z], 2^{n} w\right)-\left[f\left(2^{n} x, 2^{n} w\right), 2^{n} y, 2^{n} z\right]\right. \\
& \quad-\left[2^{n} x, f\left(2^{n} y, 2^{n} w^{*}\right), 2^{n} z\right]-\left[2^{n} x, 2^{n} y, f\left(2^{n} z, 2^{n} w\right)\right] \| \\
& \quad+\| f\left(2^{n} x, 8^{n}[y, z, w]\right)-\left[f\left(2^{n} x, 2^{n} y\right), 2^{n} z, 2^{n} w\right] \\
& \left.\quad \quad-\left[2^{n} y, f\left(2^{n} x^{*}, 2^{n} z\right), 2^{n} w\right]-\left[2^{n} y, 2^{n} z, f\left(2^{n} x, 2^{n} w\right)\right] \|\right) \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{16^{p n} \theta}{16^{n}}\|x\|^{p}\|y\|^{p}\|z\|^{p}\|w\|^{p}=0
\end{aligned}
$$

for all $x, y, z, w \in A$. So

$$
\delta([x, y, z], w)=[\delta(x, w), y, z]+\left[x, \delta\left(y, w^{*}\right), z\right]+[x, y, \delta(z, w)]
$$

and

$$
\delta(x,[y, z, w])=[\delta(x, y), z, w]+\left[y, \delta\left(x^{*}, z\right), w\right]+[y, z, \delta(x, w)]
$$

for all $x, y, z, w \in A$.
Therefore, the mapping $\delta: A \times A \rightarrow A$ is a biderivation satisfying (10), as desired.

Theorem 3.2. Let θ and p be positive real numbers with $p>1$ and let $f: A \times A \rightarrow A$ be a mapping satisfying (7) and (8). If the mapping $f: A \times A \rightarrow A$ satisfies
(11) $\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}, \frac{z}{2^{n}}\right)=\lim _{n \rightarrow \infty} 16^{n} f\left(\frac{x}{8^{n}}, \frac{z}{2^{n}}\right)=\lim _{n \rightarrow \infty} 16^{n} f\left(\frac{x}{2^{n}}, \frac{z}{8^{n}}\right)$
for all $x, z \in A$, then there exists a unique biderivation $\delta: A \times A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-\delta(x, z)\| \leq \frac{\theta}{4^{2 p}-4}\|x\|^{2 p}\|z\|^{2 p} \tag{12}
\end{equation*}
$$

for all $x, z \in A$.
Proof. Letting $\varphi(x, y, z, w):=\theta\|x\|^{p}\|y\|^{p}\|z\|^{p}\|w\|^{p}$ in Theorem 2.4, we get a unique \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ given by $\delta(x, z):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}, \frac{z}{2^{n}}\right)$ satisfying (12).

It follows from (8) that

$$
\begin{aligned}
& \left\|\delta([x, y, z], w)-[\delta(x, w), y, z]-\left[x, \delta\left(y, w^{*}\right), z\right]-[x, y, \delta(z, w)]\right\| \\
& \quad+\left\|\delta(x,[y, z, w])-[\delta(x, y), z, w]-\left[y, \delta\left(x^{*}, z\right), w\right]-[y, z, \delta(x, w)]\right\| \\
& =\lim _{n \rightarrow \infty} 16^{n}\left(\| f\left(\frac{[x, y, z]}{8^{n}}, \frac{w}{2^{n}}\right)-\left[f\left(\frac{x}{2^{n}}, \frac{w}{2^{n}}\right), \frac{y}{2^{n}}, \frac{z}{2^{n}}\right]\right. \\
& \quad-\left[\frac{x}{2^{n}}, f\left(\frac{y}{2^{n}}, \frac{w^{*}}{2^{n}}\right), \frac{z}{2^{n}}\right]-\left[\frac{x}{2^{n}}, \frac{y}{2^{n}}, f\left(\frac{z}{2^{n}}, \frac{w}{2^{n}}\right)\right] \| \\
& \quad+\| f\left(\frac{x}{2^{n}}, \frac{[y, z, w]}{8^{n}}\right)-\left[f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right), \frac{z}{2^{n}}, \frac{w}{2^{n}}\right]- \\
& \left.\quad\left[\frac{y}{2^{n}}, f\left(\frac{x^{*}}{2^{n}}, \frac{z}{2^{n}}\right), \frac{w}{2^{n}}\right]-\left[\frac{y}{2^{n}}, \frac{z}{2^{n}}, f\left(\frac{x}{2^{n}}, \frac{w}{2^{n}}\right)\right] \|\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{16^{n} \theta}{16^{p n}}\|x\|^{p}\|y\|^{p}\|z\|^{p}\|w\|^{p}=0
\end{aligned}
$$

for all $x, y, z, w \in A$. So

$$
\delta([x, y, z], w)=[\delta(x, w), y, z]+\left[x, \delta\left(y, w^{*}\right), z\right]+[x, y, \delta(z, w)]
$$

and

$$
\delta(x,[y, z, w])=[\delta(x, y), z, w]+\left[y, \delta\left(x^{*}, z\right), w\right]+[y, z, \delta(x, w)]
$$

for all $x, y, z, w \in A$.
Therefore, the mapping $\delta: A \times A \rightarrow A$ is a biderivation satisfying (12), as desired.

Theorem 3.3. Let θ and p be positive real numbers with $p<2$ and let $f: A \times A \rightarrow A$ be a mapping satisfying (9) and

$$
\begin{align*}
& \quad\left\|E_{\lambda, \mu} f(x, y, z, w)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right) \tag{13}\\
& \left\|f([x, y, z], w)-[f(x, w), y, z]-\left[x, f\left(y, w^{*}\right), z\right]-[x, y, f(z, w)]\right\| \tag{14}\\
& +\left\|f(x,[y, z, w])-[f(x, y), z, w]-\left[y, f\left(x^{*}, z\right), w\right]-[y, z, f(x, w)]\right\| \\
& \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)
\end{align*}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique biderivation $\delta: A \times A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-\delta(x, z)\| \leq \frac{2 \theta}{4-2^{p}}\left(\|x\|^{p}+\|z\|^{p}\right) \tag{15}
\end{equation*}
$$

for all $x, z \in A$.
Proof. Letting $\varphi(x, y, z, w):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$ in Theorem 2.3, we get a unique \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ given by $\delta(x, z):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right)$ satisfying (15).

The rest of the proof is similar to the proof of Theorem 3.1.
Theorem 3.4. Let θ and p be positive real numbers with $p>4$ and let $f: A \times A \rightarrow A$ be a mapping satisfying (11), (13) and (14). Then there exists a unique biderivation $\delta: A \times A \rightarrow A$ such that

$$
\begin{equation*}
\|f(x, z)-\delta(x, z)\| \leq \frac{2 \theta}{2^{p}-4}\left(\|x\|^{p}+\|z\|^{p}\right) \tag{16}
\end{equation*}
$$

for all $x, z \in A$.
Proof. Letting $\varphi(x, y, z, w):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$ in Theorem 2.4, we get a unique \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ given by $\delta(x, z):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}, \frac{z}{2^{n}}\right)$ satisfying (16).

The rest of the proof is similar to the proof of Theorem 3.2.

References

1. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
2. J. Bae \& W. Park: Approximate bi-homomorphisms and bi-derivations in C^{*}-ternary algebras. Bull. Korean Math. Soc. 47 (2010), 195-209.
3. M. Eshaghi Gordji and A. Bodaghi: On the stability of quadratic double centralizers on Banach algebras. J. Comput. Anal. Appl. 13 (2011), 724-729.
4. M. Eshaghi Gordji, R. Farokhzad Rostami \& S.A.R. Hosseinioun: Nearly higher derivations in unital C^{*}-algebras. J. Comput. Anal. Appl. 13 (2011), 734-742.
5. M. Eshaghi Gordji, G.H. Kim, J.R. Lee \& C. Park: Generalized ternary bi-derivations on ternary Banach algebras: a fixed point approach. J. Comput. Anal. Appl. 15 (2013), 45-54.
6. T. Hopkins: Nilpotent ideals in Lie and anti-Lie triple systems. J. Algebra 178 (1995), 480-492.
7. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
8. W.G. Lister: A structure theory of Lie triple systems. Trans. Amer. Math. Soc. 72 (1952), 217-242.
9. M.S. Moslehian: Almost derivations on C^{*}-ternary rings. Bull. Belg. Math. Soc.-Simon Stevin 14 (2007), 135-142.
10. J.M. Rassias: On approximation of approximately linear mappings by linear mappings. J. Funct. Anal. 46 (1982), 126-130.
11. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
12. S. Shagholi, M. Eshaghi Gordji \& M. Bavand Savadkouhi: Stability of ternary quadratic derivations on ternary Banach algebras. J. Comput. Anal. Appl. 13 (2011), 1097-1105.
13. S. Shagholi, M. Eshaghi Gordji \& M. Bavand Savadkouhi: Nearly ternaty cubic homomorphisms in ternary Fréchet algebras. J. Comput. Anal. Appl. 13 (2011), 1106-1114.
14. J. Shokri, A. Ebadian \& R. Aghalari: Approximate bihomomorphisms and biderivations in 3-Lie algebras. Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 1, Art. ID 1220020, 13 pages.
15. S.M. Ulam: Problems in Modern Mathematics. Chapter VI, Science ed., Wiley, New York, 1940.
${ }^{a}$ Department of Mathematics, University of Seoul, Seoul 02504, Korea
Email address: dyshin@uos.ac.kr
${ }^{\text {b }}$ Department of Mathematics, Daejin University, Kyeonggi 11159, Korea
Email address: jrlee@@daejin.ac.kr
${ }^{c}$ Ohsang High School, Gumi 39453, Kyeongsangbuk Do, Korea
Email address: sjp4829@hanmail.net

[^0]: Received by the editors May 05, 2017. Accepted May 22, 2017.
 2010 Mathematics Subject Classification. 17A40, 39B52, 39B82, 16W25, 46K70, 46L05, 46B99.
 Key words and phrases. Hyers-Ulam stability, bi-additive mapping, Lie triple system, biderivation.

 * Corresponding author.

