APPROXIMATE BIHOMOMORPHISMS AND BIDERIVATIONS IN 3-LIE ALGEBRAS: REVISITED

Dong Yun Shin^a, Jung Rye Lee^{b,*} and Jeong Pil Seo^c

ABSTRACT. Shokri et al. [14] proved the Hyers-Ulam stability of bihomomorphisms and biderivations by using the direct method.

It is easy to show that the definition of biderivations on normed 3-Lie algebras is meaningless and so the results of [14] are meaningless.

In this paper, we correct the definition of biderivations and the statements of the results in [14], and prove the corrected theorems.

1. INTRODUCTION AND PRELIMINARIES

A normed (Banach) Lie triple system is a normed (Banach) space $(A, \|\cdot\|)$ with a trilinear mapping $(x, y, z) \mapsto [x, y, z]$ from $A \times A \times A$ to A satisfying the following axioms:

$$\begin{array}{lll} [x,y,z] &=& -\left[y,x,z\right], \\ [x,y,z] &=& -\left[y,z,x\right] - \left[z,x,y\right], \\ [u,v,[x,y,z]] &=& \left[\left[u,v,x\right],y,z\right] + \left[x,\left[u,v,y\right],z\right] + \left[x,y,\left[u,v,z\right]\right], \\ & \parallel \left[x,y,z\right] \parallel &\leq & \|x\| \|y\| \|z\| \end{array}$$

for all $u, v, x, y, z \in A$. The concept of Lie triple system was introduced by Lister [8] (see [6]).

Let A and B be normed Lie triple systems. A \mathbb{C} -linear mapping $H : A \to B$ is called a *homomorphism* if it satisfies

$$H([x, y, z]) = [H(x), H(y), H(z)]$$

for all $x, y, z \in A$. A \mathbb{C} -linear mapping $\delta : A \to A$ is called a *derivation* if it satisfies

$$\delta([x, y, z]) = [\delta(x), y, z] + [x, \delta(y), z] + [x, y, \delta(z)]$$

2010 Mathematics Subject Classification. 17A40, 39B52, 39B82, 16W25, 46K70, 46L05, 46B99.

 $\bigodot 2017$ Korean Soc. Math. Educ.

Received by the editors May 05, 2017. Accepted May 22, 2017.

 $[\]label{eq:keywords} \textit{Key words and phrases. Hyers-Ulam stability, bi-additive mapping, Lie triple system, biderivation. *Corresponding author.}$

for all $x, y, z \in A$ (see [9, 14]).

Definition 1.1 ([14]). Let A be a normed Lie triple system. A \mathbb{C} -bilinear mapping $\delta : A \times A \to A$ is called a *biderivation* if it satisfies

$$\begin{split} \delta([x, y, z], w) &= [\delta(x, w), y, z] + [x, \delta(y, w), z] + [x, y, \delta(z, w)], \\ \delta(x, [y, z, w], w) &= [\delta(x, y), z, w] + [y, \delta(x, z), w] + [y, z, \delta(x, w)] \end{split}$$

for all $x, y, z, w \in A$.

The *w*-variable of the left side in the first equality is \mathbb{C} -linear and the *x*-variable of the left side in the second equality is \mathbb{C} -linear. But the *w*-variable of the right side in the first equality is not \mathbb{C} -linear and the *x*-variable of the right side in the second equality is not \mathbb{C} -linear. Thus we correct the definition of biderivation as follows.

Definition 1.2. Let A be a normed Lie triple system. A \mathbb{C} -bilinear mapping δ : $A \times A \to A$ is called a *biderivation* if it satisfies

$$\begin{split} \delta([x, y, z], w) &= [\delta(x, w), y, z] + [x, \delta(y, w^*), z] + [x, y, \delta(z, w)], \\ \delta(x, [y, z, w], w) &= [\delta(x, y), z, w] + [y, \delta(x^*, z), w] + [y, z, \delta(x, w)] \end{split}$$

for all $x, y, z, w \in A$.

The stability problem of functional equations originated from a question of Ulam [15] concerning the stability of group homomorphisms. Hyers [7] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Th.M. Rassias [11] for linear mappings by considering an unbounded Cauchy difference. J.M. Rassias [10] followed the innovative approach of the Th.M. Rassias theorem in which he replaced the factor $||x||^p + ||y||^p$ by $||x||^p ||y||^p$ for $p, q \in \mathbb{R}$ with $p + q \neq 1$. The stability problems of various functional equations have been extensively investigated by a number of authors (see [3, 4, 5, 12, 13]).

All the mappings T and δ , given in [14, Sections 2 and 4], satisfy the bi-additive functional equation (1.2) in [14]. Letting x = z = 0 in (1.2), we get f(y, w) = 0 for all y, w. So the results of [14, Sections 2 and 4] are meaningless.

In this paper, we will replace the equation (1.2), given in [14], by

(1)
$$f(x+y,z+w) + f(x+y,z-w) + f(x-y,z+w) + f(x-y,z-w)$$

= 4f(x,z).

Furthermore, we correct the statements of the results in [14, Sections 2 and 4], and prove the corrected theorems.

2. Hyers-Ulam Stability of the Functional Equation (1) IN BANACH SPACES

Throughout this section, assume that A is a normed space and B is a Banach space.

For a given mapping $f: A \times A \to B$, we define

$$E_{\lambda,\mu}f(x,y,z,w) = f(\lambda x + \lambda y, \mu z + \mu w) + f(\lambda x + \lambda y, \mu z - \mu w)$$
$$+ f(\lambda x - \lambda y, \mu z + \mu w) + f(\lambda x - \lambda y, \mu z - \mu w) - 4\lambda\mu f(x,z)$$

for all $x, y, z, w \in A$ and all $\lambda, \mu \in \mathbb{T}^1 := \{\nu \in \mathbb{C} : |\nu| = 1\}.$

From now on, assume that f(0, z) = f(x, 0) = 0 for all $x, z \in A$.

We need the following lemmas to obtain the main results.

Lemma 2.1 ([2]). Let $f : A \times A \to B$ be a bi-additive mapping such that $f(\lambda x, \mu y) = \lambda \mu f(x, y)$ for all $x, y \in A$ and all $\lambda, \mu \in \mathbb{T}^1$. Then the mapping $f : A \times A \to B$ is \mathbb{C} -bilinear.

Lemma 2.2. Let $f : A \times A \to B$ be a mapping satisfying $E_{\lambda,\mu}f(x, y, z, w) = 0$ for all $x, y, z, w \in A$ and all $\lambda, \mu \in \mathbb{T}^1$. Then the mapping $f : A \times A \to B$ is \mathbb{C} -bilinear.

Proof. Let $\lambda = \mu = 1$, y = x and w = 0. Then 2f(2x, z) = 4f(x, z) = 0 for all $y, z \in A$. Let $\lambda = \mu = 1$ and w = 0. Then 2f(x + y, z) + 2f(x - y, z) = 4f(x, z) = 0 for all $x, y, z \in A$. Let $x_1 = x + y$ and $x_2 = x - y$. Then $2f(x_1, z) + 2f(x_2, z) = 4f\left(\frac{x_1+x_2}{2}, z\right) = 2f(x_1 + x_2, z)$ and so f is additive in the first variable.

Similarly, one can show that f is additive in the second variable.

Letting y = w = 0, we get $4f(\lambda x, \mu z) = 4\lambda \mu f(x, z)$ for all $x, z \in A$. By Lemma 2.1, the mapping f is \mathbb{C} -bilinear.

Theorem 2.3. Let $f : A \times A \to B$ be a mapping for which there exists a function $\varphi : A^4 \to [0, \infty)$ such that

(2)
$$\|E_{\lambda,\mu}f(x,y,z,w)\| \leq \varphi(x,y,z,w),$$

$$\Phi(x, y, z, w): = \frac{1}{4} \sum_{n=0}^{\infty} \frac{1}{4^n} \varphi(2^n x, 2^n y, 2^n z, 2^n w) < \infty$$

for all $\lambda, \mu \in \mathbb{T}^1$ and all $x, y, z, w \in A$. Then there exists a unique \mathbb{C} -bilinear mapping $T: A \times A \to B$ such that

(3)
$$||f(x,z) - T(x,z)|| \le \Phi(x,x,z,z)$$

for all $x, z \in A$.

Proof. Letting $\lambda = \mu = 1$, y = x and w = z in (2), we get

(4)
$$||f(2x,2z) - 4f(x,z)|| \le \varphi(x,x,z,z)$$

and so

(5)
$$\left\| f(x,z) - \frac{1}{4}f(2x,2z) \right\| \le \frac{1}{4}\varphi(x,x,z,z)$$

for all $x, z \in A$.

It follows from (5) that

(6)
$$\left\| \frac{1}{4^l} f(2^l x, 2^l z) - \frac{1}{4^m} f(2^m x, 2^m z) \right\| \le \sum_{j=l}^{m-1} \frac{1}{4^{j+1}} \varphi\left(2^j x, 2^j x, 2^j z, 2^j z\right)$$

for all $x, z \in A$ and all nonnegative integers m, l with m > l. This implies that the sequence $\left\{\frac{1}{4^n}f(2^nx, 2^nz)\right\}$ is a Cauchy sequence for all $x, z \in A$. Since A is complete, the sequence $\left\{\frac{1}{4^n}f(2^nx, 2^nz)\right\}$ converges. Thus one can define the mapping $T: A \times A \to A$ by

$$T(x,z) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x, 2^n z)$$

for all $x, z \in A$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (6), we get (3).

By the definition of the mapping T, we have

$$\begin{aligned} \|E_{\lambda,\mu}T(x,y,z,w)\| &= \lim_{n \to \infty} \frac{1}{4^n} \|E_{\lambda,\mu}f(2^n x, 2^n y, 2^n z, 2^n w)\| \\ &\leq \lim_{n \to \infty} \frac{1}{4^n} \varphi(2^n x, 2^n y, 2^n z, 2^n w) = 0 \end{aligned}$$

for all $\lambda, \mu \in \mathbb{T}^1$ and all $x, y, z, w \in A$. By Lemma 2.2, the mapping $T : A \times A \to A$ is \mathbb{C} -bilinear.

Let $T': A \times A \to A$ be another \mathbb{C} -bilinear mapping satisfying (3). Then we have

$$\begin{aligned} \|T(x,z) - T'(x,z)\| &= \frac{1}{4^n} \|T(2^n x, 2^n z) - T'(2^n x, 2^n z)\| \\ &\leq \frac{1}{4^n} \|T(2^n x, 2^n z) - f(2^n x, 2^n z)\| \\ &\quad + \frac{1}{4^n} \|f(2^n x, 2^n z) - T'(2^n x, 2^n z)\| \\ &\leq 2\frac{1}{4^n} \Phi(2^n x, 2^n x, 2^n z, 2^n z), \end{aligned}$$

which tends to zero as $n \to \infty$ for all $x, z \in A$. This proves the uniqueness of T.

Therefore, the mapping $T: A \times A \to A$ is a unique \mathbb{C} -bilinear mapping satisfying (3), as desired.

Theorem 2.4. Let $f : A \times A \to B$ be a mapping for which there exists a function $\varphi : A^4 \to [0, \infty)$ satisfying (2) and

$$\Phi(x, y, z, w): = \frac{1}{4} \sum_{n=1}^{\infty} 4^n \varphi\left(\frac{x}{2^n}, \frac{y}{2^n}, \frac{z}{2^n}, \frac{w}{2^n}\right) < \infty$$

for all $\lambda, \mu \in \mathbb{T}^1$ and all $x, y, z, w \in A$. Then there exists a unique \mathbb{C} -bilinear mapping $T: A \times A \to B$ such that

$$||f(x,z) - T(x,z)|| \le \Phi(x,x,z,z)$$

for all $x, z \in A$.

Proof. It follows from (4) that

$$\left|f(x,z) - 4f\left(\frac{x}{2},\frac{z}{2}\right)\right\| \le \varphi\left(\frac{x}{2},\frac{x}{2},\frac{z}{2},\frac{z}{2}\right)$$

for all $x, z \in A$.

The rest of the proof is similar to the proof of Theorem 2.3.

3. Hyers-Ulam Stability of Biderivations on Banach Lie Triple Systems

Throughout this section, assume that A is a Banach Lie triple system.

In this section, we prove the Hyers-Ulam stability of biderivations on Banach Lie triple systems.

Theorem 3.1. Let θ and p be positive real numbers with $p < \frac{1}{2}$ and let $f : A \times A \to A$ be a mapping such that

(7)
$$\|E_{\lambda,\mu}f(x,y,z,w)\| \leq \theta \|x\|^p \|y\|^p \|z\|^p \|w\|^p,$$

(8)
$$\|f([x, y, z], w) - [f(x, w), y, z] - [x, f(y, w^*), z] - [x, y, f(z, w)]\| + \|f(x, [y, z, w]) - [f(x, y), z, w] - [y, f(x^*, z), w] - [y, z, f(x, w)]\| \leq \theta \|x\|^p \|y\|^p \|z\|^p \|w\|^p$$

for all $\lambda, \mu \in \mathbb{T}^1$ and all $x, y, z, w \in A$. If the mapping $f : A \times A \to A$ satisfies

(9)
$$\lim_{n \to \infty} \frac{1}{4^n} f(2^n x, 2^n z) = \lim_{n \to \infty} \frac{1}{16^n} f(8^n x, 2^n z) = \lim_{n \to \infty} \frac{1}{16^n} f(2^n x, 8^n z)$$

for all $x, z \in A$, then there exists a unique biderivation $\delta : A \times A \to A$ such that

(10)
$$||f(x,z) - \delta(x,z)|| \le \frac{\theta}{4 - 4^{2p}} ||x||^{2p} ||z||^{2p}$$

for all $x, z \in A$.

Proof. Letting $\varphi(x, y, z, w) := \theta ||x||^p ||y||^p ||z||^p ||w||^p$ in Theorem 2.3, we get a unique \mathbb{C} -bilinear mapping $\delta : A \times A \to A$ given by $\delta(x, z) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x, 2^n z)$ satisfying (10).

It follows from (8) and (9) that

$$\begin{split} \|\delta([x,y,z],w) - [\delta(x,w),y,z] - [x,\delta(y,w^*),z] - [x,y,\delta(z,w)]\| \\ &+ \|\delta(x,[y,z,w]) - [\delta(x,y),z,w] - [y,\delta(x^*,z),w] - [y,z,\delta(x,w)]\| \\ &= \lim_{n \to \infty} \frac{1}{16^n} (\|f(8^n[x,y,z],2^nw) - [f(2^nx,2^nw),2^ny,2^nz] \\ &- [2^nx,f(2^ny,2^nw^*),2^nz] - [2^nx,2^ny,f(2^nz,2^nw)]\| \\ &+ \|f(2^nx,8^n[y,z,w]) - [f(2^nx,2^ny),2^nz,2^nw] \\ &- [2^ny,f(2^nx^*,2^nz),2^nw] - [2^ny,2^nz,f(2^nx,2^nw)]\|) \\ &\leq \lim_{n \to \infty} \frac{16^{pn}\theta}{16^n} \|x\|^p \|y\|^p \|z\|^p \|w\|^p = 0 \end{split}$$

for all $x, y, z, w \in A$. So

$$\delta([x,y,z],w) = [\delta(x,w),y,z] + [x,\delta(y,w^*),z] + [x,y,\delta(z,w)]$$

and

$$\delta(x,[y,z,w])=[\delta(x,y),z,w]+[y,\delta(x^*,z),w]+[y,z,\delta(x,w)]$$

for all $x, y, z, w \in A$.

Therefore, the mapping $\delta : A \times A \to A$ is a biderivation satisfying (10), as desired.

Theorem 3.2. Let θ and p be positive real numbers with p > 1 and let $f : A \times A \to A$ be a mapping satisfying (7) and (8). If the mapping $f : A \times A \to A$ satisfies

(11)
$$\lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}, \frac{z}{2^n}\right) = \lim_{n \to \infty} 16^n f\left(\frac{x}{8^n}, \frac{z}{2^n}\right) = \lim_{n \to \infty} 16^n f\left(\frac{x}{2^n}, \frac{z}{8^n}\right)$$

for all $x, z \in A$, then there exists a unique biderivation $\delta : A \times A \to A$ such that

(12)
$$||f(x,z) - \delta(x,z)|| \le \frac{\theta}{4^{2p} - 4} ||x||^{2p} ||z||^{2p}$$

for all $x, z \in A$.

Proof. Letting $\varphi(x, y, z, w) := \theta ||x||^p ||y||^p ||z||^p ||w||^p$ in Theorem 2.4, we get a unique C-bilinear mapping $\delta : A \times A \to A$ given by $\delta(x, z) := \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}, \frac{z}{2^n}\right)$ satisfying (12).

It follows from (8) that

$$\begin{split} \|\delta([x,y,z],w) - [\delta(x,w),y,z] - [x,\delta(y,w^*),z] - [x,y,\delta(z,w)]\| \\ &+ \|\delta(x,[y,z,w]) - [\delta(x,y),z,w] - [y,\delta(x^*,z),w] - [y,z,\delta(x,w)]\| \\ &= \lim_{n \to \infty} 16^n \left(\left\| f\left(\frac{[x,y,z]}{8^n}, \frac{w}{2^n}\right) - \left[f\left(\frac{x}{2^n}, \frac{w}{2^n}\right), \frac{y}{2^n}, \frac{z}{2^n} \right] \right. \\ &- \left[\frac{x}{2^n}, f\left(\frac{y}{2^n}, \frac{w^*}{2^n}\right), \frac{z}{2^n} \right] - \left[\frac{x}{2^n}, \frac{y}{2^n}, f\left(\frac{z}{2^n}, \frac{w}{2^n}\right) \right] \right\| \\ &+ \left\| f\left(\frac{x}{2^n}, \frac{[y,z,w]}{8^n}\right) - \left[f\left(\frac{x}{2^n}, \frac{y}{2^n}\right), \frac{z}{2^n}, \frac{w}{2^n} \right] - \left. \left[\frac{y}{2^n}, f\left(\frac{x^*}{2^n}, \frac{z}{2^n}\right), \frac{w}{2^n} \right] - \left[\frac{y}{2^n}, \frac{z}{2^n}, f\left(\frac{x}{2^n}, \frac{w}{2^n}\right) \right] \right\| \right) \\ &\leq \lim_{n \to \infty} \frac{16^n \theta}{16^{pn}} \|x\|^p \|y\|^p \|z\|^p \|w\|^p = 0 \end{split}$$

for all $x, y, z, w \in A$. So

$$\delta([x,y,z],w) = [\delta(x,w),y,z] + [x,\delta(y,w^*),z] + [x,y,\delta(z,w)]$$

and

$$\delta(x,[y,z,w]) = [\delta(x,y),z,w] + [y,\delta(x^*,z),w] + [y,z,\delta(x,w)]$$

for all $x, y, z, w \in A$.

Therefore, the mapping $\delta : A \times A \to A$ is a biderivation satisfying (12), as desired.

Theorem 3.3. Let θ and p be positive real numbers with p < 2 and let $f : A \times A \to A$ be a mapping satisfying (9) and

(13)
$$\|E_{\lambda,\mu}f(x,y,z,w)\| \leq \theta(\|x\|^p + \|y\|^p + \|z\|^p + \|w\|^p),$$

(14)
$$\|f([x, y, z], w) - [f(x, w), y, z] - [x, f(y, w^*), z] - [x, y, f(z, w)]\| \\ + \|f(x, [y, z, w]) - [f(x, y), z, w] - [y, f(x^*, z), w] - [y, z, f(x, w)]\| \\ \le \theta(\|x\|^p + \|y\|^p + \|z\|^p + \|w\|^p)$$

for all $\lambda, \mu \in \mathbb{T}^1$ and all $x, y, z, w \in A$. Then there exists a unique biderivation $\delta : A \times A \to A$ such that

(15)
$$||f(x,z) - \delta(x,z)|| \le \frac{2\theta}{4 - 2^p} (||x||^p + ||z||^p)$$

for all $x, z \in A$.

Proof. Letting $\varphi(x, y, z, w) := \theta(||x||^p + ||y||^p + ||z||^p + ||w||^p)$ in Theorem 2.3, we get a unique \mathbb{C} -bilinear mapping $\delta : A \times A \to A$ given by $\delta(x, z) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x, 2^n z)$ satisfying (15).

The rest of the proof is similar to the proof of Theorem 3.1.

Theorem 3.4. Let θ and p be positive real numbers with p > 4 and let $f : A \times A \to A$ be a mapping satisfying (11), (13) and (14). Then there exists a unique biderivation $\delta : A \times A \to A$ such that

(16)
$$||f(x,z) - \delta(x,z)|| \le \frac{2\theta}{2^p - 4} (||x||^p + ||z||^p)$$

for all $x, z \in A$.

Proof. Letting $\varphi(x, y, z, w) := \theta(\|x\|^p + \|y\|^p + \|z\|^p + \|w\|^p)$ in Theorem 2.4, we get a unique \mathbb{C} -bilinear mapping $\delta : A \times A \to A$ given by $\delta(x, z) := \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}, \frac{z}{2^n}\right)$ satisfying (16).

The rest of the proof is similar to the proof of Theorem 3.2.

References

- T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
- J. Bae & W. Park: Approximate bi-homomorphisms and bi-derivations in C^{*}-ternary algebras. Bull. Korean Math. Soc. 47 (2010), 195-209.

- 3. M. Eshaghi Gordji and A. Bodaghi: On the stability of quadratic double centralizers on Banach algebras. J. Comput. Anal. Appl. **13** (2011), 724-729.
- M. Eshaghi Gordji, R. Farokhzad Rostami & S.A.R. Hosseinioun: Nearly higher derivations in unital C^{*}-algebras. J. Comput. Anal. Appl. 13 (2011), 734-742.
- M. Eshaghi Gordji, G.H. Kim, J.R. Lee & C. Park: Generalized ternary bi-derivations on ternary Banach algebras: a fixed point approach. J. Comput. Anal. Appl. 15 (2013), 45-54.
- T. Hopkins: Nilpotent ideals in Lie and anti-Lie triple systems. J. Algebra 178 (1995), 480-492.
- D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
- W.G. Lister: A structure theory of Lie triple systems. Trans. Amer. Math. Soc. 72 (1952), 217-242.
- M.S. Moslehian: Almost derivations on C^{*}-ternary rings. Bull. Belg. Math. Soc.-Simon Stevin 14 (2007), 135-142.
- J.M. Rassias: On approximation of approximately linear mappings by linear mappings. J. Funct. Anal. 46 (1982), 126-130.
- Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
- S. Shagholi, M. Eshaghi Gordji & M. Bavand Savadkouhi: Stability of ternary quadratic derivations on ternary Banach algebras. J. Comput. Anal. Appl. 13 (2011), 1097-1105.
- S. Shagholi, M. Eshaghi Gordji & M. Bavand Savadkouhi: Nearly ternaty cubic homomorphisms in ternary Fréchet algebras. J. Comput. Anal. Appl. 13 (2011), 1106-1114.
- J. Shokri, A. Ebadian & R. Aghalari: Approximate bihomomorphisms and biderivations in 3-Lie algebras. Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 1, Art. ID 1220020, 13 pages.
- S.M. Ulam: Problems in Modern Mathematics. Chapter VI, Science ed., Wiley, New York, 1940.

^aDepartment of Mathematics, University of Seoul, Seoul 02504, Korea *Email address*: dyshin@uos.ac.kr

^bDepartment of Mathematics, Daejin University, Kyeonggi 11159, Korea *Email address*: jrlee@@daejin.ac.kr

^cOHSANG HIGH SCHOOL, GUMI 39453, KYEONGSANGBUK DO, KOREA *Email address*: sjp4829@hanmail.net