• Title/Summary/Keyword: beta transform

Search Result 161, Processing Time 0.023 seconds

ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER TYPE OPERATORS

  • Wang, Yueshan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1117-1127
    • /
    • 2019
  • Let ${\mathcal{L}}_2=(-{\Delta})^2+V^2$ be the $Schr{\ddot{o}}dinger$ type operator, where nonnegative potential V belongs to the reverse $H{\ddot{o}}lder$ class $RH_s$, s > n/2. In this paper, we consider the operator $T_{{\alpha},{\beta}}=V^{2{\alpha}}{\mathcal{L}}^{-{\beta}}_2$ and its conjugate $T^*_{{\alpha},{\beta}}$, where $0<{\alpha}{\leq}{\beta}{\leq}1$. We establish the $(L^p,\;L^q)$-boundedness of operator $T_{{\alpha},{\beta}}$ and $T^*_{{\alpha},{\beta}}$, respectively, we also show that $T_{{\alpha},{\beta}}$ is bounded from Hardy type space $H^1_{L_2}({\mathbb{R}}^n)$ into $L^{p_2}({\mathbb{R}}^n)$ and $T^*_{{\alpha},{\beta}}$ is bounded from $L^{p_1}({\mathbb{R}}^n)$ into BMO type space $BMO_{{\mathcal{L}}1}({\mathbb{R}}^n)$, where $p_1={\frac{n}{4({\beta}-{\alpha})}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})}}$.

SOME EXPRESSIONS FOR THE INVERSE INTEGRAL TRANSFORM VIA THE TRANSLATION THEOREM ON FUNCTION SPACE

  • Chang, Seung Jun;Chung, Hyun Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1261-1273
    • /
    • 2016
  • In this paper, we analyze the necessary and sufficient condition introduced in [5]: that a functional F in $L^2(C_{a,b}[0,T])$ has an integral transform ${\mathcal{F}}_{{\gamma},{\beta}}F$, also belonging to $L^2(C_{a,b}[0,T])$. We then establish the inverse integral transforms of the functionals in $L^2(C_{a,b}[0,T])$ and then examine various properties with respect to the inverse integral transforms via the translation theorem. Several possible outcomes are presented as remarks. Our approach is a new method to solve some difficulties with respect to the inverse integral transform.

ON GENERALIZED EXTENDED BETA AND HYPERGEOMETRIC FUNCTIONS

  • Shoukat Ali;Naresh Kumar Regar;Subrat Parida
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.313-334
    • /
    • 2024
  • In the current study, our aim is to define new generalized extended beta and hypergeometric types of functions. Next, we methodically determine several integral representations, Mellin transforms, summation formulas, and recurrence relations. Moreover, we provide log-convexity, Turán type inequality for the generalized extended beta function and differentiation formulas, transformation formulas, differential and difference relations for the generalized extended hypergeometric type functions. Also, we additionally suggest a generating function. Further, we provide the generalized extended beta distribution by making use of the generalized extended beta function as an application to statistics and obtaining variance, coefficient of variation, moment generating function, characteristic function, cumulative distribution function, and cumulative distribution function's complement.

Anticoagulant Activity of Sulfated Barley $\beta$-Glucan

  • Bae, In-Young;Chang, Yun-Jeoung;Kim, Hye-Won;Lee, Hyeon-Gyu
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.870-872
    • /
    • 2008
  • Barley $\beta$-glucan was subjected to chemical modification and the anticoagulant activity of the derivative was investigated. The barley $\beta$-glucan was successfully sulfated, showing the degree of substitution calculated by elemental analysis of 0.40. In addition, the Fourier transform infrared (FT-IR) spectra of the derivative confirmed the sulfation, which generated two new absorption bands at 1,250/cm (S=O) and 810/cm (C-O-S) compared to the native. Specially, the anticoagulant activity of barley $\beta$-glucan was created by sulfation, which increased in a concentration-dependent manner. This result demonstrated that the incorporation of sulfate groups into the $\beta$-glucan structure added a blood clotting prevention effect.

THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION WITH CAPUTO DERIVATIVES

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.179-190
    • /
    • 2005
  • We deal with the Cauchy problem for the space-time fractional diffusion equation, which is obtained from standard diffusion equation by replacing the second-order space derivative with a Caputo (or Riemann-Liouville) derivative of order ${\beta}{\in}$ (0, 2] and the first-order time derivative with Caputo derivative of order ${\beta}{\in}$ (0, 1]. The fundamental solution (Green function) for the Cauchy problem is investigated with respect to its scaling and similarity properties, starting from its Fourier-Laplace representation. We derive explicit expression of the Green function. The Green function also can be interpreted as a spatial probability density function evolving in time. We further explain the similarity property by discussing the scale-invariance of the space-time fractional diffusion equation.

ESTIMATES FOR THE HIGHER ORDER RIESZ TRANSFORMS RELATED TO SCHRÖDINGER TYPE OPERATORS

  • Wang, Yanhui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.235-251
    • /
    • 2021
  • We consider the Schrödinger type operator ��k = (-∆)k+Vk on ℝn(n ≥ 2k + 1), where k = 1, 2 and the nonnegative potential V belongs to the reverse Hölder class RHs with n/2 < s < n. In this paper, we establish the (Lp, Lq)-boundedness of the higher order Riesz transform T��,�� = V2��∇2��-��2 (0 ≤ �� ≤ 1/2 < �� ≤ 1, �� - �� ≥ 1/2) and its adjoint operator T∗��,�� respectively. We show that T��,�� is bounded from Hardy type space $H^1_{\mathcal{L}_2}({\mathbb{R}}_n)$ into Lp2 (ℝn) and T∗��,�� is bounded from ��p1 (ℝn) into BMO type space $BMO_{\mathcal{L}_1}$ (ℝn) when �� - �� > 1/2, where $p_1={\frac{n}{4({\beta}-{\alpha})-2}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})+2}}$. Moreover, we prove that T��,�� is bounded from $BMO_{\mathcal{L}_1}({\mathbb{R}}_n)$ to itself when �� - �� = 1/2.

A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION

  • Arshad, Muhammad;Choi, Junesang;Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.549-560
    • /
    • 2018
  • Since Mittag-Leffler introduced the so-called Mittag-Leffler function in 1903, due to its usefulness and diverse applications, a variety and large number of its extensions (and generalizations) and variants have been presented and investigated. In this sequel, we aim to introduce a new extension of the Mittag-Leffler function by using a known extended beta function. Then we investigate ceratin useful properties and formulas associated with the extended Mittag-Leffler function such as integral representation, Mellin transform, recurrence relation, and derivative formulas. We also introduce an extended Riemann-Liouville fractional derivative to present a fractional derivative formula for a known extended Mittag-Leffler function, the result of which is expressed in terms of the new extended Mittag-Leffler functions.

EXTENSION OF EXTENDED BETA, HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Rathie, Arjun K.;Parmar, Rakesh K.
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.357-385
    • /
    • 2014
  • Recently several authors have extended the Gamma function, Beta function, the hypergeometric function, and the confluent hypergeometric function by using their integral representations and provided many interesting properties of their extended functions. Here we aim at giving further extensions of the abovementioned extended functions and investigating various formulas for the further extended functions in a systematic manner. Moreover, our extension of the Beta function is shown to be applied to Statistics and also our extensions find some connections with other special functions and polynomials such as Laguerre polynomials, Macdonald and Whittaker functions.