Integral Transforms of Square Integrable Functionals on YehWiener Space

Byoung Soo Kim
School of Liberal Arts, Seoul National University of Technology, Seoul 139-743, Korea
e-mail: mathkbs@snut.ac.kr

Abstract. We give a necessary and sufficient condition that a square integrable functional $F(x)$ on Yeh-Wiener space has an integral transform $\hat{\mathcal{F}}_{\alpha, \beta} F(x)$ which is also square integrable. This extends the result by Kim and Skoug for functional $F(x)$ in $L_{2}\left(C_{0}[0, T]\right)$.

1. Introduction and definitions

Let $C(Q)$ denote Yeh-Wiener space; that is the space of all real-valued continuous functions $x(s, t)$ on $Q=[0, S] \times[0, T]$ with $x(s, 0)=x(0, t)=0$ for all $0 \leq s \leq S$ and $0 \leq t \leq T$. Yeh [14] defined a Gaussian measure m_{Y} on $C(Q)$ (later modified in [16]) such that as a stochastic process $\{x(s, t):(s, t) \in Q\}$ has mean $E[x(s, t)]=0$ and covariance $E[x(s, t) x(u, v)]=\min \{s, u\} \min \{t, v\}$.

Let \mathcal{M} denote the class of all Yeh-Wiener measurable subsets of $C(Q)$ and we denote the Yeh-Wiener integral of a Yeh-Wiener integrable functional F by

$$
\int_{C(Q)} F(x) m_{Y}(d x)
$$

Let $L_{2}(C(Q))$ be the space of all real or complex valued functionals F satisfying

$$
\int_{C(Q)}|F(x)|^{2} m_{Y}(d x)<\infty
$$

Let $K(Q)$ be the space of complex valued continuous functions defined on Q and satisfying $x(s, 0)=x(0, t)=0$ for all $0 \leq s \leq S$ and $0 \leq t \leq T$. Let α and β be nonzero complex numbers. Next we state the definitions of the integral transform $\mathcal{F}_{\alpha, \beta} F$ introduced in [12] and studied in [6],[9],[10] and [11].

Definition 1.1. Let F be a functional defined on $K(Q)$. Then the integral transform $\mathcal{F}_{\alpha, \beta} F$ of F is defined by

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta} F(y)=\int_{C(Q)} F(\alpha x+\beta y) m_{Y}(d x), \quad y \in K(Q) \tag{1.1}
\end{equation*}
$$

Received 24 January 2008; accepted 1 April 2008.
2000 Mathematics Subject Classification: 28C20, 60 J 65.
Key words and phrases: Yeh-Wiener integral, integral transform, Fourier-Wiener transform, Fourier-Hermite functional.
if it exists.
Remark 1.2. (1) When $\alpha=1$ and $\beta=i, \mathcal{F}_{\alpha, \beta} F$ is a Yeh-Wiener space version of the Fourier-Wiener transform introduced by Cameron in [2] and used by Cameron and Martin in [3].
(2) When $\alpha=\sqrt{2}$ and $\beta=i, \mathcal{F}_{\alpha, \beta} F$ is a Yeh-Wiener space version of the modified Fourier-Wiener transform introduced by Cameron and Martin in [4].
(3) Equation (1.1) implies that

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta \beta^{\prime}} F(y)=\mathcal{F}_{\alpha, \beta} F\left(\beta^{\prime} y\right), \quad y \in K(Q) \tag{1.2}
\end{equation*}
$$

for any nonzero complex number β^{\prime}.
(4) For a detailed survey of previous work on integral transform, Fourier-Wiener transform and Fourier-Feynman transform [5], see [13].

Recently Kim and Skoug [11] established a necessary and sufficient condition that a functional $F(x)$ in $L_{2}\left(C_{0}[0, T]\right)$ has an integral transform $\mathcal{F}_{\alpha, \beta} F(x)$ which also belong to $L_{2}\left(C_{0}[0, T]\right)$. In this paper we extend this result for square integrable functionals on Yeh-Wiener space, that is, we give a necessary and sufficient condition that a functional $F(x)$ in $L_{2}(C(Q))$ has an integral transform $\hat{\mathcal{F}}_{\alpha, \beta} F(x)$, which will be defined in Section 3, also belonging to $L_{2}(C(Q))$.

Now we introduce a concept of the function of bounded variation of two variables. The concept of bounded variation for a function of two variables is surprisingly complex. In this paper we will use the definition used by Hardy and Krause [1],[8] which we now review.

Let $R=[a, b] \times[c, d]$ and let P be a partition of R given by

$$
a=s_{0}<s_{1}<\cdots<s_{n}=b, \quad c=t_{0}<t_{1}<\cdots<t_{m}=d .
$$

A function $f(s, t)$ is said to be of bounded variation on R in the sense of Hardy and Krause provided the following three conditions hold.
(1) There is a constant B such that

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{m}\left|f\left(s_{i}, t_{j}\right)-f\left(s_{i}, t_{j-1}\right)-f\left(s_{i-1}, t_{j}\right)+f\left(s_{i-1}, t_{j-1}\right)\right| \leq B \tag{1.3}
\end{equation*}
$$

for all partitions P.
(2) For each $t \in[c, d], f(\cdot, t)$ is a function of bounded variation on $[a, b]$.
(3) For each $s \in[a, b], f(s, \cdot)$ is a function of bounded variation on $[c, d]$.

The total variation $\operatorname{Var}(f, R)$ of f over R is defined to be the supremum of the sums in (1.3) over all partitions P of R. $\operatorname{Var}(f(\cdot, t),[a, b])$ and $\operatorname{Var}(f(s, \cdot),[c, d])$ will denote the total variation of $f(\cdot, t)$ on $[a, b]$ and $f(s, \cdot)$ on $[c, d]$, respectively, as functions of single variable.

The definition of bounded variation by Hardy and Krause has the important property that if g is continuous on R and f is of bounded variation on R then the

Riemann-Stieltjes integrals $\int_{R} g(s, t) d f(s, t)$ and $\int_{R} f(s, t) d g(s, t)$ both exist and satisfy an integration by parts formula [7].

Let $\left\{\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right\}$ be an orthonormal set of real-valued functions in $L_{2}(C(Q))$. Furthermore assume that each θ_{j} is of bounded variation in the sense of Hardy and Krause on Q. Then for each $y \in K(Q)$ and $j=1,2, \cdots$, the RiemannStieltjes integral $\left\langle\theta_{j}, y\right\rangle \equiv \int_{Q} \theta_{j}(s, t) d y(s, t)$ exists. We finish this section by introducing a well-known Yeh-Wiener integration formula for functionals $f(\langle\vec{\theta}, x\rangle) \equiv$ $f\left(\left\langle\theta_{1}, x\right\rangle, \cdots,\left\langle\theta_{n}, x\right\rangle\right)$:

$$
\begin{equation*}
\int_{C(Q)} f(\langle\vec{\theta}, x\rangle) m_{Y}(d x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} f(\vec{u}) \exp \left\{-\frac{1}{2}\|\vec{u}\|^{2}\right\} d \vec{u} \tag{1.4}
\end{equation*}
$$

where $\|\vec{u}\|^{2}=\sum_{j=1}^{n} u_{j}^{2}$ and $d \vec{u}=d u_{1} \cdots d u_{n}$.

2. Integral transforms of the Fourier-Hermite functionals

For $n=0,1,2, \cdots$, let $H_{n}(u)$ denote the Hermite polynomial

$$
H_{n}(u)=(-1)^{n}(n!)^{-1 / 2} e^{u^{2} / 2} \frac{d^{n}}{d u^{n}}\left(e^{-u^{2} / 2}\right)
$$

Then, as is well known, the set

$$
\begin{equation*}
\left\{(2 \pi)^{-1 / 4} H_{n}(u) e^{-u^{2} / 4}: n=0,1,2, \cdots\right\} \tag{2.1}
\end{equation*}
$$

is a complete orthonormal (CON) set on \mathbb{R}.
Let $\left\{\theta_{p}(s, t): p=1,2, \cdots\right\}$ be a CON set of functions of bounded variation on Q. Define

$$
\Phi_{n, p}(y)=H_{n}\left(\left\langle\theta_{p}, y\right\rangle\right), \quad n=0,1,2, \cdots, p=1,2, \cdots,
$$

and

$$
\begin{equation*}
\Psi_{n_{1}, \cdots, n_{p}}(y)=\Psi_{n_{1}, \cdots, n_{p}, 0, \cdots, 0}(y)=\Phi_{n_{1}, 1}(y) \cdots \Phi_{n_{p}, p}(y) \tag{2.2}
\end{equation*}
$$

for $y \in K(Q)$. The functionals in (2.2) are called the Fourier-Hermite functionals on Yeh-Wiener space.

In [15], Yeh showed that the Fourier-Hermite functionals form a CON set in $L_{2}(C(Q))$. That is to say that every functional $F(x)$ in $L_{2}(C(Q))$ has a FourierHermite development which converges in the $L_{2}(C(Q))$ sense to $F(x)$; namely that

$$
\begin{equation*}
F(x)=\underset{N \rightarrow \infty}{\operatorname{li.m} .} \sum_{n_{1}, \cdots, n_{N}=0}^{N} A_{n_{1}, \cdots, n_{N}}^{F} \Psi_{n_{1}, \cdots, n_{N}}(x), \tag{2.3}
\end{equation*}
$$

where $A_{n_{1}, \cdots, n_{N}}^{F}$ is the Fourier-Hermite coefficient

$$
\begin{equation*}
A_{n_{1}, \cdots, n_{N}}^{F}=\int_{C(Q)} F(x) \Psi_{n_{1}, \cdots, n_{N}}(x) m_{Y}(d x) \tag{2.4}
\end{equation*}
$$

Throughout this paper, in order to insure that various integrals exist, we will assume that $\beta=a+b i$ is a nonzero complex number satisfying the inequality

$$
\begin{equation*}
\operatorname{Re}\left(1-\beta^{2}\right)=1+b^{2}-a^{2}>0 \tag{2.5}
\end{equation*}
$$

Note that $\operatorname{Re}\left(1-\beta^{2}\right)=1+b^{2}-a^{2}>0$ if and only if the point $(a, b) \in \mathbb{R}^{2}$ lies in the open region, determined by the hyperbola $a^{2}-b^{2}=1$, containing the b-axis. Hence for all $|\beta| \leq 1, \beta \neq \pm 1, \operatorname{Re}\left(1-\beta^{2}\right)>0$. Next we define

$$
\begin{equation*}
\alpha \equiv \sqrt{1-\beta^{2}}, \quad-\pi / 4<\arg (\alpha)<\pi / 4 \tag{2.6}
\end{equation*}
$$

and note that $\alpha^{2}+\beta^{2}=1$ and $\operatorname{Re}\left(\alpha^{2}\right)=\operatorname{Re}\left(1-\beta^{2}\right)>0$.
The following lemma is introduced in [11] and will be needed to find the integral transform of the Fourier-Hermite functionals on Yeh-Wiener space.

Lemma 2.1. Let β be a nonzero complex number satisfying inequality (2.5) and let α be defined by equation (2.6). Let r be a complex number. Then for $n=0,1,2, \cdots$,

$$
\begin{equation*}
\int_{\mathbb{R}} H_{n}(u) \exp \left\{-\frac{1}{2 \alpha^{2}}(u-r \beta)^{2}\right\} d u=\sqrt{2 \pi} \alpha \beta^{n} H_{n}(r) . \tag{2.7}
\end{equation*}
$$

Next, using Lemma 2.1, we obtain a formula for the integral transform of the Fourier-Hermite functionals given by equation (2.2).
Theorem 2.2. Let α and β be as in Lemma 2.1. Then for each $y \in K(Q)$,

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta} \Psi_{n_{1}, \cdots, n_{p}}(y)=\beta^{n_{1}+\cdots+n_{p}} \Psi_{n_{1}, \cdots, n_{p}}(y) . \tag{2.8}
\end{equation*}
$$

Proof. For $j=1,2, \cdots$, let $r_{j}=\left\langle\theta_{j}, y\right\rangle$ which we know exists for all $y \in K(Q)$ since θ_{j} is of bounded variation on Q. Then for every $y \in K(Q)$, by the Yeh-Wiener integration formula (1.4),

$$
\begin{aligned}
\mathcal{F}_{\alpha, \beta} \Psi_{n_{1}, \cdots, n_{p}}(y) & =\int_{C(Q)} \Psi_{n_{1}, \cdots, n_{p}}(\alpha x+\beta y) m_{Y}(d x) \\
& =\prod_{j=1}^{p}\left[(2 \pi)^{-1 / 2} \int_{\mathbb{R}} H_{n_{j}}\left(\alpha u_{j}+\beta r_{j}\right) e^{-u_{j}^{2} / 2} d u_{j}\right] .
\end{aligned}
$$

Note that for all positive α and all $\beta \in \mathbb{C}$,

$$
\int_{\mathbb{R}} H_{n}(\alpha u+\beta r) e^{-u^{2} / 2} d u=\frac{1}{\alpha} \int_{\mathbb{R}} H_{n}(u) e^{-(u-r \beta)^{2} / 2 \alpha^{2}} d u .
$$

But each side of the above expression is an analytic function of α throughout the region $\left\{\alpha \in \mathbb{C}: \operatorname{Re}\left(\alpha^{2}\right)>0\right\}$. Hence by the uniqueness theorem for analytic functions, the above equality holds for all α with $\operatorname{Re}\left(\alpha^{2}\right)>0$ and all $\beta \in \mathbb{C}$ and so

$$
\mathcal{F}_{\alpha, \beta} \Psi_{n_{1}, \cdots, n_{p}}(y)=\prod_{j=1}^{p}\left[\left(2 \pi \alpha^{2}\right)^{-1 / 2} \int_{\mathbb{R}} H_{n_{j}}\left(u_{j}\right) e^{-\left(u_{j}-r_{j} \beta\right)^{2} / 2 \alpha^{2}} d u_{j}\right] .
$$

Then using Lemma 2.1, we obtain equation (2.8), the desired result.
Our first corollary follows immediately from equation (2.8) and the fact that $\left\|\Psi_{n_{1}, \cdots, n_{p}}\right\|_{2}=1$.
Corollary 2.3. Let α and β be as in Lemma 2.1. Then

$$
\begin{equation*}
\left\|\mathcal{F}_{\alpha, \beta} \Psi_{n_{1}, \cdots, n_{p}}\right\|_{2}=|\beta|^{n_{1}+\cdots+n_{p}} \tag{2.9}
\end{equation*}
$$

By (1.2) and Theorem 2.2, we obtain the following corollary.
Corollary 2.4. Let α and β be as in Lemma 2.1 and let γ be any nonzero complex number. Then for each $y \in K(Q)$,

$$
\begin{equation*}
\mathcal{F}_{\alpha, \gamma} \Psi_{n_{1}, \cdots, n_{p}}(y)=\beta^{n_{1}+\cdots+n_{p}} \Psi_{n_{1}, \cdots, n_{p}}\left(\frac{\gamma y}{\beta}\right) . \tag{2.10}
\end{equation*}
$$

3. Integral transforms of functionals belonging to $L_{2}(C(Q))$

For $F \in L_{2}(C(Q))$ let (2.3) denote the Fourier-Hermite expression of $F(x)$ with the Fourier-Hermite coefficients $A_{n_{1}, \cdots, n_{N}}^{F}$ given by equation (2.4). For $N=1,2, \cdots$, let

$$
\begin{equation*}
F_{N}(x)=\sum_{n_{1}, \cdots, n_{N}=0}^{N} A_{n_{1}, \cdots, n_{N}}^{F} \Psi_{n_{1}, \cdots, n_{N}}(x) \tag{3.1}
\end{equation*}
$$

Then by Theorem 2.2, we know that for each $N=1,2, \cdots$, the integral transform $\mathcal{F}_{\alpha, \beta} F_{N}$ exists for all α and β as in Lemma 2.1, and $\mathcal{F}_{\alpha, \beta} F_{N}$ is an element of $L_{2}(C(Q))$ such that for each $y \in K(Q)$,

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta} F_{N}(y)=\sum_{n_{1}, \cdots, n_{N}=0}^{N} A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \cdots, n_{N}}(y) . \tag{3.2}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\left\|\mathcal{F}_{\alpha, \beta} F_{N}\right\|_{2}^{2}=\sum_{n_{1}, \cdots, n_{N}=0}^{N}\left|A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2} . \tag{3.3}
\end{equation*}
$$

Definition 3.1. Let $F \in L_{2}(C(Q))$ be given by (2.3). Then for each pair of nonzero complex numbers α and β, we define the integral transform $\hat{\mathcal{F}}_{\alpha, \beta} F$ of F to be

$$
\begin{equation*}
\hat{\mathcal{F}}_{\alpha, \beta} F(x)=\underset{N \rightarrow \infty}{\text { l.i.m. }} \mathcal{F}_{\alpha, \beta} F_{N}(x), \quad x \in C(Q) \tag{3.4}
\end{equation*}
$$

if it exists; that is to say if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{C(Q)}\left|\hat{\mathcal{F}}_{\alpha, \beta} F(x)-\mathcal{F}_{\alpha, \beta} F_{N}(x)\right|^{2} m_{Y}(d x)=0 \tag{3.5}
\end{equation*}
$$

Suppose that F is a functional defined on $K(Q)$ and has the integral transform $\mathcal{F}_{\alpha, \beta} F(y)$ for $y \in K(Q)$ in the sense of Definition 1.1. Further assume that F, as a function of $x \in C(Q)$, belongs to $L_{2}(C(Q))$ and has the integral transform $\hat{\mathcal{F}}_{\alpha, \beta} F$ for $x \in C(Q)$ in the sense of Definition 3.1. The following example shows that the two integral transforms $\mathcal{F}_{\alpha, \beta} F(x)$ and $\hat{\mathcal{F}}_{\alpha, \beta} F(x)$ for $x \in C(Q)$ need not coincide.

Example 3.2. Let F be a functional defined on $K(Q)$ by

$$
F(y)= \begin{cases}0, & \text { if } y \in C(Q) \\ 1, & \text { if } y \in K(Q) \backslash C(Q)\end{cases}
$$

Then F belongs to $L_{2}(C(Q))$ and for $x \in C(Q)$, we have

$$
\mathcal{F}_{\sqrt{2}, i} F(x)=\int_{C(Q)} F(\sqrt{2} z+i x) m_{Y}(d z)=1
$$

On the other hand, for any nonnegative integers n_{1}, \cdots, n_{N},

$$
A_{n_{1}, \cdots, n_{N}}^{F}=\int_{C(Q)} F(x) \Psi_{n_{1}, \cdots, n_{N}}(x) m_{Y}(d x)=0
$$

and so $F_{N}(y)=0$ for $y \in K(Q)$ and for all $N=1,2, \cdots$. Now

$$
\mathcal{F}_{\sqrt{2}, i} F_{N}(x)=\int_{C(Q)} F_{N}(\sqrt{2} z+i x) m_{Y}(d z)=0, \quad x \in C(Q)
$$

and so

$$
\hat{\mathcal{F}}_{\sqrt{2}, i} F(x)=\underset{N \rightarrow \infty}{\text { li.m. }} \mathcal{F}_{\sqrt{2}, i} F_{N}(x)=0, \quad x \in C(Q)
$$

Hence we conclude that

$$
\mathcal{F}_{\sqrt{2}, i} F(x) \neq \hat{\mathcal{F}}_{\sqrt{2}, i} F(x)
$$

for $x \in C(Q)$.
Theorem 3.3. Let $F \in L_{2}(C(Q))$ be given by (2.3). Let α and β be nonzero complex numbers and let c be a nonzero real number. Then

$$
\begin{equation*}
\hat{\mathcal{F}}_{\alpha, c \beta} F(x)=\hat{\mathcal{F}}_{\alpha, \beta} F(c x) \tag{3.6}
\end{equation*}
$$

for $x \in C(Q)$.
Proof. By (1.2) for each $N=1,2, \cdots$,

$$
\mathcal{F}_{\alpha, c \beta} F_{N}(x)=\mathcal{F}_{\alpha, \beta} F_{N}(c x)
$$

and so

$$
\hat{\mathcal{F}}_{\alpha, c \beta} F(x)=\underset{N \rightarrow \infty}{\operatorname{li.m} .} \mathcal{F}_{\alpha, c \beta} F_{N}(x)=\underset{N \rightarrow \infty}{\operatorname{li.m} .} \mathcal{F}_{\alpha, \beta} F_{N}(c x)=\hat{\mathcal{F}}_{\alpha, \beta} F(c x)
$$

as desired.
The following lemma gives us a relationship between the Fourier-Hermite coefficients of $\hat{\mathcal{F}}_{\alpha, \beta} F$ and F.

Lemma 3.4. Let $F \in L_{2}(C(Q))$ be given by (2.3) with Fourier-Hermite coefficients given by (2.4). Let α and β be as in Lemma 2.1 and assume that $\hat{\mathcal{F}}_{\alpha, \beta} F$ exists and is in $L_{2}(C(Q))$. Then

$$
\begin{equation*}
A_{n_{1}, \cdots, n_{N}}^{\hat{\mathcal{F}}_{\alpha, \beta} F}=A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}} \tag{3.7}
\end{equation*}
$$

for each $N=1,2, \cdots$.
Proof. Fix $N=1,2, \cdots$. For any given $\epsilon>0$, take a natural number M satisfying $\left\|\hat{\mathcal{F}}_{\alpha, \beta} F-\mathcal{F}_{\alpha, \beta} F_{M}\right\|_{2}<\epsilon$ and $M \geq N$. Then we have

$$
\begin{aligned}
& \left|A_{n_{1}, \cdots, n_{N}}^{\hat{\mathcal{N}}_{\alpha, \beta} F}-A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right| \\
= & \left|\int_{C(Q)} \hat{\mathcal{F}}_{\alpha, \beta} F(x) \Psi_{n_{1}, \cdots, n_{N}}(x) m_{Y}(d x)-A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right| \\
\leq & \left|\int_{C(Q)}\left[\hat{\mathcal{F}}_{\alpha, \beta} F(x)-\mathcal{F}_{\alpha, \beta} F_{M}(x)\right] \Psi_{n_{1}, \cdots, n_{N}}(x) m_{Y}(d x)\right| \\
& +\left|\int_{C(Q)} \mathcal{F}_{\alpha, \beta} F_{M}(x) \Psi_{n_{1}, \cdots, n_{N}}(x) m_{Y}(d x)-A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right| .
\end{aligned}
$$

But by the Hölder inequality and the fact that $\left\{\Psi_{n_{1}, \cdots, n_{N}}\right\}$ is an orthonormal set,

$$
\left|\int_{C(Q)}\left[\hat{\mathcal{F}}_{\alpha, \beta} F(x)-\mathcal{F}_{\alpha, \beta} F_{M}(x)\right] \Psi_{n_{1}, \cdots, n_{N}}(x) m_{Y}(d x)\right| \leq\left\|\hat{\mathcal{F}}_{\alpha, \beta} F-\mathcal{F}_{\alpha, \beta} F_{M}\right\|_{2}<\epsilon
$$

and from (3.2) we know that

$$
\int_{C(Q)} \mathcal{F}_{\alpha, \beta} F_{M}(x) \Psi_{n_{1}, \cdots, n_{N}}(x) m_{Y}(d x)=A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}
$$

Hence

$$
\left|A_{n_{1}, \cdots, n_{N}}^{\hat{\mathcal{F}}_{\alpha, \beta} F}-A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|<\epsilon
$$

which establishes equation (3.7).
The following theorem is our main result. It gives a necessary and sufficient condition that a functional F in $L_{2}(C(Q))$ has an integral transform $\hat{\mathcal{F}}_{\alpha, \beta} F$ belonging to $L_{2}(C(Q))$.

Theorem 3.5. Let $F \in L_{2}(C(Q))$ be given by (2.3) with Fourier-Hermite coefficients given by (2.4). Let α and β be as in Lemma 2.1. Then $\hat{\mathcal{F}}_{\alpha, \beta} F$ exists and is an element of $L_{2}(C(Q))$ if and only if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sum_{n_{1}, \cdots, n_{N}=0}^{N}\left|A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2}<\infty . \tag{3.8}
\end{equation*}
$$

Furthermore if (3.8) holds, then the Fourier-Hermite expression of $\hat{\mathcal{F}}_{\alpha, \beta} F$ is given by

$$
\begin{equation*}
\hat{\mathcal{F}}_{\alpha, \beta} F(x)=\operatorname{l.}_{N \rightarrow \infty} \text { i. m. } \sum_{n_{1}, \cdots, n_{N}=0}^{N} A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \cdots, n_{N}}(x) \tag{3.9}
\end{equation*}
$$

for $x \in C(Q)$.
Proof. Assume that $\hat{\mathcal{F}}_{\alpha, \beta} F$ exists and is an element of $L_{2}(C(Q))$. For any given $\epsilon>0$, we have $\left\|\hat{\mathcal{F}}_{\alpha, \beta} F-\mathcal{F}_{\alpha, \beta} F_{N}\right\|_{2}<\epsilon$ for sufficiently large N, and so

$$
\left(\sum_{n_{1}, \cdots, n_{N}=0}^{N}\left|A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2}\right)^{1 / 2}=\left\|\mathcal{F}_{\alpha, \beta} F_{N}\right\|_{2} \leq\left\|\hat{\mathcal{F}}_{\alpha, \beta} F\right\|_{2}+\epsilon .
$$

Hence we have

$$
\lim _{N \rightarrow \infty} \sum_{n_{1}, \cdots, n_{N}=0}^{N}\left|A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2} \leq\left\|\hat{\mathcal{F}}_{\alpha, \beta} F\right\|_{2}^{2}<\infty
$$

To prove the converse, suppose that (3.8) holds. Let $M>N$, let

$$
I_{M}=\left\{\left(n_{1}, \cdots, n_{M}\right): n_{1}, \cdots, n_{M}=0,1, \cdots, M\right\}
$$

and let

$$
I_{N}=\left\{\left(n_{1}, \cdots, n_{M}\right): n_{1}, \cdots, n_{N}=0,1, \cdots, N \text { and } n_{N+1}=\cdots=n_{M}=0\right\}
$$

Then

$$
\begin{aligned}
& \left\|\mathcal{F}_{\alpha, \beta} F_{M}-\mathcal{F}_{\alpha, \beta} F_{N}\right\|_{2}^{2} \\
= & \left\|\sum_{I_{M}-I_{N}} A_{n_{1}, \cdots, n_{M}}^{F} \beta^{n_{1}+\cdots+n_{M}} \Psi_{n_{1}, \cdots, n_{M}}\right\|_{2}^{2} \\
= & \sum_{I_{M}-I_{N}}\left|A_{n_{1}, \cdots, n_{M}}^{F} \beta^{n_{1}+\cdots+n_{M}}\right|^{2} \\
= & \sum_{n_{1}, \cdots, n_{M}=0}^{M}\left|A_{n_{1}, \cdots, n_{M}}^{F} \beta^{n_{1}+\cdots+n_{M}}\right|^{2}-\sum_{n_{1}, \cdots, n_{N}=0}^{N}\left|A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2}
\end{aligned}
$$

which goes to 0 as $M, N \rightarrow \infty$. Hence $\left\{\mathcal{F}_{\alpha, \beta} F_{N}\right\}$ is a Cauchy sequence in $L_{2}(C(Q))$ and since $L_{2}(C(Q))$ is complete,

$$
\hat{\mathcal{F}}_{\alpha, \beta} F(x)=\underset{N \rightarrow \infty}{\operatorname{li.m.}} \mathcal{F}_{\alpha, \beta} F_{N}(x), \quad x \in C(Q)
$$

exists and is an element of $L_{2}(C(Q))$ and is given by (3.9).

Our first corollary follows immediately from Theorem 3.5.
Corollary 3.6. Let F, α and β be as in Theorem 3.5. Furthermore assume that $|\beta| \leq 1$. Then $\hat{\mathcal{F}}_{\alpha, \beta} F$ exists, belongs to $L_{2}(C(Q))$, and

$$
\begin{align*}
\left\|\hat{\mathcal{F}}_{\alpha, \beta} F\right\|_{2}^{2} & =\lim _{N \rightarrow \infty} \sum_{n_{1}, \cdots, n_{N}=0}^{N}\left|A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2} \tag{3.10}\\
& \leq \lim _{N \rightarrow \infty} \sum_{n_{1}, \cdots, n_{N}=0}^{N}\left|A_{n_{1}, \cdots, n_{N}}^{F}\right|^{2}=\|F\|_{2}^{2}
\end{align*}
$$

In addition,

$$
\begin{equation*}
\left\|\hat{\mathcal{F}}_{\alpha, \beta} F\right\|_{2}=\|F\|_{2} \tag{3.11}
\end{equation*}
$$

if and only if $|\beta|=1$.
The following corollary is immediate from Theorems 3.3 and 3.5.
Corollary 3.7. Let F, α and β be as in Theorem 3.5 and let c be a nonzero real number. Then

$$
\begin{equation*}
\hat{\mathcal{F}}_{\alpha, c \beta} F(x)=\operatorname{l.i}_{N \rightarrow \infty} \sum_{n_{1}, \cdots, n_{N}=0}^{N} A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \cdots, n_{N}}(c x) \tag{3.12}
\end{equation*}
$$

for $x \in C(Q)$.
Next choosing $\alpha=\sqrt{2}$ and $\beta=i$, we obtain a Yeh-Wiener space version of the main theorem of [4].

Corollary 3.8. Every functional $F(x) \in L_{2}(C(Q))$ has a Fourier-Wiener transform $G(x) \in L_{2}(C(Q))$. The functional $G(x)$ has $F(-x)$ as its transform and F and G satisfies Plancherel's relation

$$
\begin{equation*}
\int_{C(Q)}|F(x)|^{2} m_{Y}(d x)=\int_{C(Q)}|G(x)|^{2} m_{Y}(d x) \tag{3.13}
\end{equation*}
$$

Proof. Using Corollary 3.6 and Theorem 3.5, we obtain that $G(x) \in L_{2}(C(Q))$ is given by

$$
G(x)=\underset{N \rightarrow \infty}{\text { l.i.m. }} \sum_{n_{1}, \cdots, n_{N}=0}^{N} A_{n_{1}, \cdots, n_{N}}^{F} i^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \cdots, n_{N}}(x),
$$

and that

$$
\hat{\mathcal{F}}_{\sqrt{2}, i} G(x)=\underset{N \rightarrow \infty}{\operatorname{li.m}} \sum_{n_{1}, \cdots, n_{N}=0}^{N} A_{n_{1}, \cdots, n_{N}}^{F}(-1)^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \cdots, n_{N}}(x) .
$$

But since the Hermite polynomial H_{n} is an even function if n is even and an odd function if n is odd, it is easy to see that

$$
(-1)^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \cdots, n_{N}}(x)=\Psi_{n_{1}, \cdots, n_{N}}(-x)
$$

and so $\hat{\mathcal{F}}_{\sqrt{2}, i} G(x)=F(-x)$. Finally equation (3.13) follows immediately from (3.11).

Recall that throughout this paper we have assumed that $\beta=a+b i$ was a nonzero complex number satisfying inequality (2.5); namely that $\operatorname{Re}\left(1-\beta^{2}\right)>$ 0 . Furthermore, in Corollary 3.6 we showed that if β also satisfies the inequality $|\beta| \leq 1$, then $\hat{\mathcal{F}}_{\alpha, \beta} F$ exists as an element of $L_{2}(C(Q))$ for all $F \in L_{2}(C(Q))$ with α given by (2.6). In Example 10 of [11], Kim and Skoug showed that for any complex number β with $|\beta|>1$ and $\operatorname{Re}\left(1-\beta^{2}\right)>0$, there exists a functional $F \in L_{2}\left(C_{0}[0, T]\right)$ such that $\mathcal{F}_{\alpha, \beta} F, \hat{\mathcal{F}}_{\alpha, \beta} F$ in our notation, doesn't exist as an element of $L_{2}\left(C_{0}[0, T]\right)$. Using the same idea as in Example 10 of [11], we can construct a functional $F \in L_{2}(C(Q))$ such that $\hat{\mathcal{F}}_{\alpha, \beta} F$ doesn't exist as an element of $L_{2}(C(Q))$ when β is a complex number with $|\beta|>1$ and $\operatorname{Re}\left(1-\beta^{2}\right)>0$.

Our final results involves the inverse transform of $\hat{\mathcal{F}}_{\alpha, \beta}$. In order to insure the existence of the inverse transform of $\hat{\mathcal{F}}_{\alpha, \beta}$ we need to put an additional assumption on $\beta=a+b i$; namely that

$$
\begin{equation*}
\operatorname{Re}\left(1-\frac{1}{\beta^{2}}\right)>0 \tag{3.14}
\end{equation*}
$$

Now $\operatorname{Re}\left(1-1 / \beta^{2}\right)>0$ if and only if $\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)>0$. But the graph of $\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)=0$ is the lemniscate $r^{2}=\cos (2 \theta)$. Hence $\operatorname{Re}\left(1-1 / \beta^{2}\right)>0$ if and only if the point $(a, b) \in \mathbb{R}^{2}$ lies outside the lemniscate $\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)=0$.

Theorem 3.9. Let F, α and β be as in Theorem 3.5 and assume that (3.8) holds. Furthermore assume that β satisfies inequality (3.14). Then for $\alpha^{\prime} \equiv \sqrt{1-1 / \beta^{2}}$ and $\beta^{\prime}= \pm 1 / \beta$, we have that

$$
\begin{equation*}
\hat{\mathcal{F}}_{\alpha^{\prime}, \beta^{\prime}} \hat{\mathcal{F}}_{\alpha, \beta} F(x)=F\left(\beta \beta^{\prime} x\right), \quad x \in C(Q) . \tag{3.15}
\end{equation*}
$$

That is to say,

$$
\begin{equation*}
\hat{\mathcal{F}}_{\alpha^{\prime}, 1 / \beta} \hat{\mathcal{F}}_{\alpha, \beta} F(x)=F(x), \quad x \in C(Q) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathcal{F}}_{\alpha^{\prime},-1 / \beta} \hat{\mathcal{F}}_{\alpha, \beta} F(x)=F(-x), \quad x \in C(Q) . \tag{3.17}
\end{equation*}
$$

Proof. Since $\hat{\mathcal{F}}_{\alpha, \beta} F$ exists, the Fourier-Hermite expression of it is given by

$$
\hat{\mathcal{F}}_{\alpha, \beta} F(x)=\underset{N \rightarrow \infty}{\text { l.i. } . ~} \sum_{n_{1}, \cdots, n_{N}=0}^{N} A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \cdots, n_{N}}(x)
$$

for $x \in C(Q)$. Now since $\beta \beta^{\prime}= \pm 1$, we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \sum_{n_{1}, \cdots, n_{N}=0}^{N}\left|A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\left(\beta^{\prime}\right)^{n_{1}+\cdots+n_{N}}\right|^{2} & =\lim _{N \rightarrow \infty} \sum_{n_{1}, \cdots, n_{N}=0}^{N}\left|A_{n_{1}, \cdots, n_{N}}^{F}\right|^{2} \\
& =\|F\|_{2}^{2}<\infty .
\end{aligned}
$$

Hence by Theorem 3.5, $\hat{\mathcal{F}}_{\alpha^{\prime}, \beta^{\prime}} \hat{\mathcal{F}}_{\alpha, \beta} F$ exists and is given by

$$
\begin{aligned}
\hat{\mathcal{F}}_{\alpha^{\prime}, \beta^{\prime}} \hat{\mathcal{F}}_{\alpha, \beta} F(x) & =\underset{N \rightarrow \infty}{\operatorname{li.m}} \sum_{n_{1}, \cdots, n_{N}=0}^{N} A_{n_{1}, \cdots, n_{N}}^{F}\left(\beta \beta^{\prime}\right)^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \cdots, n_{N}}(x) \\
& =\underset{N \rightarrow \infty}{\text { i. i.m. }} \sum_{n_{1}, \cdots, n_{N}=0}^{N} A_{n_{1}, \cdots, n_{N}}^{F} \Psi_{n_{1}, \cdots, n_{N}}\left(\beta \beta^{\prime} x\right) \\
& =F\left(\beta \beta^{\prime} x\right),
\end{aligned}
$$

for $x \in C(Q)$, where the second equality holds since $\beta \beta^{\prime}=1$ or -1 , and this completes the proof of Theorem 3.9.

The following corollary is immediate from Theorems 3.3 and 3.9.
Corollary 3.10. Let $F, \alpha, \beta, \alpha^{\prime}$ and β^{\prime} be as in Theorem 3.9. Let c and c^{\prime} be nonzero real numbers. Then

$$
\begin{equation*}
\hat{\mathcal{F}}_{\alpha^{\prime}, c^{\prime} \beta^{\prime}} \hat{\mathcal{F}}_{\alpha, c \beta} F(x)=F\left(c c^{\prime} \beta \beta^{\prime} x\right) \tag{3.18}
\end{equation*}
$$

for $x \in C(Q)$.

References

[1] E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc., 30(1984), 305-321.
[2] R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J., 12(1945), 485-488.
[3] R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J., 12(1945), 489-507.
[4] R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of functionals belonging to L_{2} over the space C, Duke Math. J., 14(1947), 99-107.
[5] R. H. Cameron and D. A. Storvick, An L2 analytic Fourier-Feynman transform, Michigan Math. J., 23(1976), 1-30.
[6] K. S. Chang, B. S. Kim and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener spaces, Numer. Funct. Anal. Optim., 21 (2000), 97-105.
[7] E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series, Vol. 1 (3rd ed.), Dover, New York, 1957.
[8] G. W. Johnson and D. L. Skoug, A stochastic integration formula for two-parameter Wiener \times two-parameter Wiener space, SIAM J. Math. Anal., 18(1987), 919-932.
[9] B. J. Kim, B. S. Kim and D. Skoug, Integral transforms, convolution products, and first variations, Internat. J. Math. Math. Sci., 2004(2004), 579-598.
[10] B. J. Kim, B. S. Kim and I. Yoo, Integral transforms of functionals on a function space of two variables, submitted.
[11] B. S. Kim and D. Skoug, Integral transforms of functionals in $L_{2}\left(C_{0}[0, T]\right)$, Rocky Mountain J. Math., 33(2003), 1379-1393.
[12] Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal., 47(1982), 153-164.
[13] D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math., 34(2004), 1147-1176.
[14] J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc., 95(1960), 433-450.
[15] J. Yeh, Orthogonal developments of functionals and related theroems in the Wiener space of functions of two variables, Pacific J. Math., 13(1963), 14271436.
[16] J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1983.

