Browse > Article
http://dx.doi.org/10.4134/JKMS.j150485

SOME EXPRESSIONS FOR THE INVERSE INTEGRAL TRANSFORM VIA THE TRANSLATION THEOREM ON FUNCTION SPACE  

Chang, Seung Jun (Department of Mathematics Dankook University)
Chung, Hyun Soo (Department of Mathematics Dankook University)
Publication Information
Journal of the Korean Mathematical Society / v.53, no.6, 2016 , pp. 1261-1273 More about this Journal
Abstract
In this paper, we analyze the necessary and sufficient condition introduced in [5]: that a functional F in $L^2(C_{a,b}[0,T])$ has an integral transform ${\mathcal{F}}_{{\gamma},{\beta}}F$, also belonging to $L^2(C_{a,b}[0,T])$. We then establish the inverse integral transforms of the functionals in $L^2(C_{a,b}[0,T])$ and then examine various properties with respect to the inverse integral transforms via the translation theorem. Several possible outcomes are presented as remarks. Our approach is a new method to solve some difficulties with respect to the inverse integral transform.
Keywords
generalized Brownian motion process; generalized integral transform; dense subset; inverse integral transform; translation theorem;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 485-488.   DOI
2 R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489-507.   DOI
3 R. H. Cameron and D. A. Storvick, Fourier-Wiener transforms of functionals belonging to $L_2$ over the space C, Duke Math. J. 14 (1947), 99-107.   DOI
4 K. S. Chang, B. S. Kim, and I. Yoo, Integral transforms and convolution of analytic functionals on abstract Wiener space, Numer. Funct. Anal. Optim. 21 (2000), no. 1-2, 97-105.   DOI
5 S. J. Chang, H. S. Chung, and D. Skoug, Integral transforms of functionals in $L^2(C_a,\;_b[0, T])$, J. Fourier Anal. Appl. 15 (2009), no. 4, 441-462.   DOI
6 S. J. Chang, H. S. Chung, and D. Skoug, Convolution products, integral transforms and inverse integral transforms of functionals in $L_2(C_0[0, T])$, Integral Transforms Spec. Funct. 21 (2010), no. 1-2, 143-151.   DOI
7 S. J. Chang, H. S. Chung, and D. Skoug, Some basic relationships among transforms, convolution products, first varia-tions and inverse transforms, Cent. Eur. J. Math. 11 (2013), no. 3, 538-551.
8 H. S. Chung, J. G. Choi, and S. J. Chang, A Fubini theorem on a function space and its applications, Banach J. Math. Anal. 7 (2013), no. 1, 173-185.   DOI
9 H. S. Chung, D. Skoug, and S. J. Chang, A Fubini theorem for integral transforms and convolution products, Internat. J. Math. 24 (2013), no. 3, Article ID 1350024, 13 pages.
10 H. S. Chung, D. Skoug, and S. J. Chang, Relationships involving transforms and convolutions via the translation theorem, Stoch. Anal. Appl. 32 (2014), no. 2, 348-363.   DOI
11 M. K. Im, U. C. Ji, and Y. J. Park, Relations among the first variation, the convolutions and the generalized Fourier-Gauss transforms, Bull. Korean Math. Soc. 48 (2011), no. 2, 291-302.   DOI
12 U. C. Ji and N. Obata, Quantum white noise calculus, Non-commutativity, infinite-dimensionality and probability at the crossroads, 143-191, QP-PQ: Quantum Probab. White Noise Anal. 16, World Sci.Publ., River Edge, NJ, 2002.
13 B. J. Kim, B. S. Kim, and D. Skoug, Integral transforms, convolution products and first variations, Int. J. Math. Math. Sci. 2004 (2004), no. 9-12, 579-598.   DOI
14 B. S. Kim and D. Skoug, Integral transforms of functionals in $L_2(C_0[0, T])$, Rocky Mountain J. Math. 33 (2003), no. 4, 1379-1393.   DOI
15 Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), no. 2, 153-164.   DOI
16 Y. J. Lee, Unitary operators on the space of $L^2$-functions over abstract Wiener spaces, Soochow J. Math. 13 (1987), no. 2, 165-174.
17 E. Nelson, Dynamical Theories of Brownian Motion, 2nd edition, Math. Notes, Princeton University Press, Princeton, 1967.
18 L. A. Shepp, Radon-Nikodym derivatives of Gaussian measures, Ann. Math. Statist. 37 (1966), 321-354.   DOI
19 D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004), no. 3, 1147-1175.   DOI
20 J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments, Illinois J. Math. 15, (1971), 37-46.
21 J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.