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SOME EXPRESSIONS FOR THE INVERSE INTEGRAL

TRANSFORM VIA THE TRANSLATION THEOREM ON

FUNCTION SPACE

Seung Jun Chang and Hyun Soo Chung

Abstract. In this paper, we analyze the necessary and sufficient condi-
tion introduced in [5]: that a functional F in L2(Ca,b[0, T ]) has an integral

transform Fγ,βF , also belonging to L2(Ca,b[0, T ]). We then establish the

inverse integral transforms of the functionals in L2(Ca,b[0, T ]) and then
examine various properties with respect to the inverse integral transforms
via the translation theorem. Several possible outcomes are presented as
remarks. Our approach is a new method to solve some difficulties with
respect to the inverse integral transform.

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space, that is, the space of real-
valued continuous functions x on [0, T ] with x(0) = 0. The concept of the
integral transform Fγ,β was introduced by Lee in his unifying paper [15]. In [4,
12, 13, 14, 16], the authors studied the integral transform and the convolution
product of functionals in various classes. Recently paper [6, 9], the authors
established basic formulas for integral transforms, convolution products and
inverse integral transforms, and they also established a Fubini theorem for
integral transforms and convolution products of functionals in L2(C0[0, T ]).

The function space Ca,b[0, T ] induced by a generalized Brownian motion was
introduced by J. Yeh in [20] and was used extensively in [5, 7, 8, 9, 10]. In
[5], the authors gave a necessary and sufficient condition that a functional F in
L2(Ca,b[0, T ]) has an integral transform Fγ,βF also belonging to L2(Ca,b[0, T ]).

Previous researches have established the inverse transform T−1 of a trans-
form T on function space (e.g., analytic Fourier-Feynman transform, (modified)
Fourier-Wiener transform, or integral transform) namely;

T−1T (F ) = TT−1(F )
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as well as basic formulas

T (F ∗G) = T (F )T (G) and T (F ) ∗ T (G) = T (FG),

where ∗ is the convolution product with respect to T . While it is well known
that establishing the inverse transform and two basic formulas on function space
can be difficult. The functionals in L2(Ca,b[0, T ]) are particularly problematic.
Recently [7], the authors have established a version of the inverse integral
transform and various basic formulas involving the inverse integral transform of
functionals. In particular, they have established the inverse integral transform
of functionals in an appropriate class as follows:

(1.1) F−1
γ,β = F−iγ,1 ◦ Fiγ,1 ◦ F−

γ
β , 1β

,

where ◦ denotes the composition of operators. However, for the existence of
the generalized integral transform Fγ,β of the functionals in L2(Ca,b[0, T ]), we
assumed that γ2+β2 = 1. In this case, γ must be zero. Therefore, this inverse
integral transform should not be used for functionals in L2(Ca,b[0, T ]), as in
equation (1.1). We need to establish a new version with respect to the inverse
integral transform.

In this paper, we introduce a dense set in L2(Ca,b[0, T ]), and then determine
the inverse integral transform for the functionals in L2(Ca,b[0, T ]). Several
properties of the inverse integral transform are examined. Finally, we present
several applications via the translation theorem on function space. The most
important feature of this paper is that we demonstrated the ability to repre-
sent the generalized integral transform, and the inverse integral transform of
functionals in L2(Ca,b[0, T ]) via the translation theorem.

However, when a(t) ≡ 0 and b(t) = t on [0, T ], the general function space
Ca,b[0, T ] reduces to the Wiener space C0[0, T ] and so most of the results in [6]
follow immediately from the results in this paper. The Wiener process used in
[4, 6, 11, 13, 14, 15, 16, 19] is stationary in time and is free of drift while the
stochastic process used in this paper as well as in [5, 7, 8, 18], is nonstationary
in time, is subject to a drift a(t), and can be used to explain the position of
the Ornstein-Uhlenbeck process in an external force field [17].

2. Preliminaries

Let a(t) be an absolutely continuous real-valued function on [0, T ] with
a(0) = 0, a′(t) ∈ L2[0, T ], and let b(t) be a strictly increasing, continu-
ously differentiable real-valued function with b(0) = 0 and b′(t) > 0 for each
t ∈ [0, T ]. The generalized Brownian motion process Y determined by a(t)
and b(t) is a Gaussian process with mean function a(t) and covariance function
r(s, t) = min{b(s), b(t)}. By Theorem 14.2 in [21], the probability measure µ
induced by Y , taking a separable version, is supported by Ca,b[0, T ] (which is
equivalent to the Banach space of continuous functions x on [0, T ] with x(0) = 0
under the sup norm). Hence, (Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space
induced by Y where B(Ca,b[0, T ]) is the Borel σ-algebra of Ca,b[0, T ]. We
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then complete this function space to obtain (Ca,b[0, T ],W(Ca,b[0, T ]), µ) where
W(Ca,b[0, T ]) is the set of all Wiener measurable subsets of Ca,b[0, T ].

A subset E of Ca,b[0, T ] is said to be scale-invariant measurable provided
ρE ∈ W(Ca,b[0, T ]) for all ρ > 0, and a scale-invariant measurable set N is said
to be a scale-invariant null set provided µ(ρN) = 0 for all ρ > 0. A property
that holds except on a scale-invariant null set is said to hold scale-invariant
almost everywhere.

Let

L2
a,b[0, T ] =

{

v :

∫ T

0

|v2(s)|db(s) < ∞ and

∫ T

0

|v2(s)|d|a|(s) < ∞
}

,

where |a|(t) denotes the total variation of the function a on the interval [0, t].
Then (L2

a,b[0, T ], ‖ · ‖a,b) is a separable Hilbert space with the norm ‖u‖a,b =
√

(u, u)a,b and (u, v)a,b =
∫ T

0
u(t)v(t)d[b(t) + |a|(t)].

For each v ∈ L2
a,b[0, T ], let 〈v, x〉 denote the Paley-Wiener-Zygmund(PWZ)

stochastic integral. Note that the properties of the PWZ integral studied several
times in many papers. For more details see, [5, 7, 8, 10].

Throughout this paper we will assume that each functional F : Ca,b[0, T ] →
C we consider is scale-invariant measurable and that

∫

Ca,b[0,T ]
|F (ρx)|dµ(x) <

∞ for each ρ > 0.
We are now ready to state the definition of the generalized integral transform

used in [5, 7, 10].

Definition 2.1. Let Ka,b[0, T ] be the complexification of Ca,b[0, T ] and let F
be a functional defined onKa,b[0, T ]. For each pair of nonzero complex numbers
γ and β, the generalized integral transform Fγ,βF of F is defined by

(2.1) Fγ,βF (y) ≡ Fγ,β(F )(y) =

∫

Ca,b[0,T ]

F (γx+ βy)dµ(x),

y ∈ Ka,b[0, T ] if it exists.

Throughout this paper, in order to ensure that various integrals exist, we will
assume that β = c+ id is a nonzero complex number satisfying the inequality

(2.2) Re(1− β2) = 1 + d2 − c2 > 0.

Note that β = c+ id satisfies equality (2.2) if and only if (c, d) ∈ R
2 lies in the

open region determined by the hyperbola c2 − d2 = 1 containing the d-axis.
Next, let

(2.3) γ =
√

1− β2, −π/4 < arg(γ) < π/4

and note that γ2 + β2 = 1 and Re(γ2) = Re(1− β2) > 0.

3. Inverse integral transforms of functionals in L2(Ca,b[0, T ])

In this section, we introduce a class A of functionals in L2(Ca,b[0, T ]). We
then establish the inverse integral transforms of functionals in A.



1264 SEUNG JUN CHANG AND HYUN SOO CHUNG

We shall analyze the condition introduced in [5, 14] to obtain the existence of
inverse integral transform. In one-parameter Wiener space C0[0, T ] (i.e., where
a(t) ≡ 0 and b(t) = t on [0, T ] for this study), the existence of the integral
transform depends on the size of β (see [14]). If |β| ≤ 1, then the integral
transform of F in L2(C0[0, T ]) always exists, and is an element of L2(C0[0, T ]).
On function space, the existence of the integral transform depends on the pairs
of (γ, β) for more detailed see [5, Theorem 7].

Now we introduce a class A of functionals which is used in this paper. Let

G = {(γ, β) ∈ C× C : Fγ,β(F ) ∈ L2(Ca,b[0, T ]), F ∈ L2(Ca,b[0, T ])}.
Also, let E

(m)
0 (m is fixed) be the class of functionals of the form

F (x) = f(〈α1, x〉, . . . , 〈αm, x〉) = f(〈~α, x〉),
where {α1, . . . , αm} is a orthonormal set in L2

a,b[0, T ] and f is an entire function
on Cm and

|f(~u)| ≤ LF exp{KF

m
∑

j=1

|uj |}

for some positive real numbers LF and KF . Then for all nonzero complex
numbers γ and β (and hence (γ, β) ∈ G), the integral transform Fγ,β(F ) ex-

ists and is an element of E
(m)
0 , for more details see [7]. Also, we can easily

check that E
(m)
0 ⊂ L2(Ca,b[0, T ]) for all m = 1, 2, . . .. Next, the general-

ized Fourier-Hermite functional Φ(m1,...,mN )(x) satisfies all definitions of the

class E
(N)
0 for each N = 1, 2, . . . and likewise that the functional FN (x) =

N
∑

m1,...,mN=0
AF

(m1,...,mN )Φ(m1,...,mN)(x) also belong to ∪∞
N=1E

(N)
0 . Let

A = ∪∞
N=1E

(N)
0 .

Then the class A is dense in L2(Ca,b[0, T ]) since the fact that

M ≡ {Φ(m1,...,mN )}∞N=1

is an orthonormal set in L2(Ca,b[0, T ]). Hence by using general theories in
vector space, we could extend all results and formulas of the space A to the
L2(Ca,b[0, T ]).

Remark 3.1. To apply the translation theorem, we now add the condition
∫ T

0

|a′(t)|2d|a|(t) < ∞;

from which it follows that
∫ T

0

[

a′(t)
b′(t)

]2

d[b(t)+ |a|(t)] < ∞. These tell us that the

mean function a can be written like as a(t) =
∫ t

0 z(s)db(s) where z(s) =
a′(s)
b′(s) ∈

L2
a,b[0, T ].

The following result was established in [10].
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Theorem 3.2. Let the function a = a(t) be as in Remark 3.1 above. Let F be

a µ-integrable functional on Ka,b[0, T ]. Then for nonzero complex number c,
F (x+ ca) is µ-integrable as a function of x ∈ Ca,b[0, T ] and

∫

Ca,b[0,T ]

F (x+ ca)dµ(x)

= exp

{

−c2 + 2c

2
(
a′

b′
, a′)

}
∫

Ca,b[0,T ]

F (x) exp

{

c〈a
′

b′
, x〉

}

dµ(x),

where (z, a′) =
∫ T

0 z(t)da(t) for some z ∈ L2
a,b[0, T ].

As mentioned in Section 1, establishing the inverse integral transform has
proven to be difficult for functionals in L2(Ca,b[0, T ]). Hereafter, the operator
Tc is defined as specified below, to solve these difficulties. We then establish
the inverse integral transform in Theorem 3.4. Define an operator Tc from A
into A by

(3.1) Tc(F )(x) = F (x + ca)

for x ∈ Ca,b[0, T ] and complex number c. The operator Tc is well-defined for
all complex number c from Theorem 3.2 above. When a(t) ≡ 0 on [0, T ], the
operator Tc is the identity operator for all complex number c and it has an
inverse operator T−c for all complex number c.

The following lemma was established in [8] and used in [10]. The formula
(3.2) is called the Fubini theorem with respect to the function space integrals.

Lemma 3.3. Let F be µ-integrable defined on Ka,b[0, T ]. Then for all complex

numbers γ and β,
(3.2)

∫

C2
a,b[0,T ]

F (γx+ βy)d(µ × µ)(x, y)=

∫

Ca,b[0,T ]

F (
√

γ2 + β2w + ca)dµ(w),

where c = γ + β −
√

γ2 + β2.

The following theorem is the first main result in this paper. Throughout
this theorem, we establish the inverse integral transform of functionals in A.
By the denseness of A, we can easily extend the result in Theorem 3.4 to the
functionals in L2(Ca,b[0, T ]).

Theorem 3.4. Let F be an element of A and let c = − γ
β
(1 + i) for nonzero

complex numbers γ and β. Then for all (γ, β) ∈ G with ( iγ
β
, 1
β
) ∈ G,

(3.3) Fi
γ
β , 1β

(Tc(Fγ,βF ))(y) = F (y) = Fγ,β(Fi
γ
β , 1

β
(TcF ))(y)

for y ∈ Ca,b[0, T ]. This tells us that the inverse integral transform F−1
γ,β of

integral transform Fγ,β is given by

F−1
γ,β = Fi

γ
β , 1β

◦ Tc.
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Proof. First for all (γ, β) ∈ G, Tc(F ) is an element of A and so for all ( iγ
β
, 1
β
) ∈

G, Fi
γ
β , 1β

(Tc(Fγ,βF ) is an element of A. Next, using equations (3.1) and (2.1)

it follows that for y ∈ Ca,b[0, T ],

Fi
γ
β , 1β

(Tc(Fγ,βF ))(y) =

∫

Ca,b[0,T ]

Tc(Fγ,βF )

(

i
γ

β
x+

1

β
y

)

dµ(x)

=

∫

Ca,b[0,T ]

Fγ,β(F )

(

i
γ

β
x+

1

β
y − γ

β
(1 + i)a

)

dµ(x)

=

∫

C2
a,b[0,T ]

F (γz + iγx+ y − γ(1 + i)a)dµ(z)dµ(x).

Now let Fy(x) = F (x+ y). Then we have

Fi
γ
β , 1β

(Tc(Fγ,βF ))(y) =

∫

C2
a,b[0,T ]

Fy−γ(1+i)a(γz + iγx)dµ(z)dµ(x).

Now using equation (3.2), the last expression above equals to the expression
∫

Ca,b[0,T ]

Fy−γ(1+i)a(
√

γ2 + (iγ)2w + (γ + iγ −
√

γ2 + (iγ)2)a)dµ(z)

=

∫

Ca,b[0,T ]

Fy−γ(1+i)a((γ + iγ)a)dµ(z)

= Fy−γ(1+i)a((γ + iγ)a) = F (y).

On the other hands, using the similar method in statement above, we can
conclude that

Fγ,β(Fi
γ
β , 1β

(Tc(F )))(y) = F (y).

Hence we complete the proof of Theorem 3.4 as desired. �

Next, we give two examples illustrating the use of equation (3.3) in Theorem
3.4.

Example 3.5. For x ∈ Ca,b[0, T ], let F (x) = x(T ). Then clearly F is an
element of A. Now we will calculate all expressions in equation (3.3) and verify
equality.

(i) Using equation (2.1), it follows that for all y ∈ Ca,b[0, T ],

Fγ,β(F )(y) = βy(T ) + γa(T )

and so

Tc(Fγ,β(F ))(y) = βy(T )− iγa(T )

Furthermore, using equation (2.1), it follows that for all y ∈ Ca,b[0, T ],

Fi
γ
β , 1β

(Tc(Fγ,βF ))(y) = y(T ) = F (y).
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(ii) As proceeding as (i), using equation (2.1), it follows that for all y ∈
Ca,b[0, T ],

Tc(F )(y) = y(T )− γ

β
a(T )− iγ

β
a(T )

and so

Fi
γ
β , 1β

(TcF )(y) =
1

β
y(T )− γ

β
a(T ).

Furthermore, using equation (2.1), it follows that for all y ∈ Ca,b[0, T ],

Fγ,β(Fi
γ
β , 1β

(TcF ))(y) = y(T ) = F (y).

Example 3.6. For x ∈ Ca,b[0, T ], let G(x) = exp{x(T )} = eF (x). Then clearly
G is an element of A. Now we will calculate all expressions in equation (3.3)
and verify equality.

(i) Using equation (2.1), it follows that for all y ∈ Ca,b[0, T ],

Fγ,β(G)(y) = exp

{

βy(T ) +
γ2

2
b2(T ) + γa(T )

}

and so

Tc(Fγ,β(G))(y) = exp

{

βy(T ) +
γ2

2
b2(T )− iγa(T )

}

.

Furthermore, using equation (2.1), it follows that for all y ∈ Ca,b[0, T ],

Fi
γ
β , 1β

(Tc(Fγ,βG))(y) = exp{y(T )} = G(y).

(ii) As proceeding as (i), using equation (2.1), it follows that for all y ∈
Ca,b[0, T ],

Tc(G)(y) = exp

{

y(T )− γ

β
a(T )− iγ

β
a(T )

}

and so

Fi
γ
β , 1β

(TcG)(y) = exp

{

1

β
y(T )− γ2

2β2
b2(T )− γ

β
a(T )

}

.

Furthermore, using equation (2.1), it follows that for all y ∈ Ca,b[0, T ],

Fγ,β(Fi γ
β , 1β

(TcG))(y) = exp{y(T )} = G(y).

Remark 3.7. In the setting of one-parameter Wiener space C0[0, T ] (i.e., where
a(t) ≡ 0 and b(t) = t on [0, T ] in our research), the operator Tc is the identity
operator and so F−1

γ,β = Fi
γ
β , 1

β
.
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4. Some properties of the inverse integral transform

In Section 3, we established the inverse integral transform. In this section,
we use the inverse integral transforms and the operator Tc to investigate some
properties with respect to the inverse integral transforms.

The following lemma tells us that the operators Tc, c ∈ C and Fγ,β are
commutative with constant weighted.

Lemma 4.1. Let F be an element of A and let c be any nonzero complex

number. Then for all (γ, β) ∈ G,
(4.1) Fγ,β(Tβc(F ))(y) = Tc(Fγ,β(F ))(y)

for y ∈ Ca,b[0, T ]. That is to say, Fγ,β ◦ Tβc = Tc ◦ Fγ,β.

Proof. Since F ∈ A, we can easily check that both sides of equation (4.1) exist.
Next, using equations (2.1) and (3.1), it follows that for y ∈ Ca,b[0, T ]

Fγ,β(Tc(F ))(y) =

∫

Ca,b[0,T ]

Tc(F )(γx+ βy)dµ(x)

=

∫

Ca,b[0,T ]

F (γx+ βy + ca)dµ(x)

and

Tc(Fγ,β(F ))(y) = Fγ,β(F )(y + ca) =

∫

Ca,b[0,T ]

F (γx+ βy + βca)dµ(x)

which complete Lemma 4.1 as desired. �

The following theorem is the second main theorem in this paper.

Theorem 4.2. Let F, γ, β and c be as in Theorem 3.4. Then

(4.2) Fγ,β(Tβc(Fi
γ
β , 1β

(F )))(y) = F (y) = Fi
γ
β , 1β

(Fγ,β(Tβc(F )))(y)

for y ∈ Ca,b[0, T ]. This tells us that the inverse integral transform F−1
i
γ
β , 1β

of

integral transform Fi
γ
β , 1β

is given by

F−1
i
γ
β , 1β

= Fγ,β ◦ Tβc.

Proof. From Theorem 3.4, we established that F−1
γ,β = Fi

γ
β , 1β

◦Tc. This implies

that
Fγ,β = (Fi

γ
β , 1β

◦ Tc)
−1 = T−1

c ◦ F−1
i
γ
β , 1β

and hence

F−1
i γ
β , 1β

= Tc ◦ Fγ,β.

Using equation (4.1) in Lemma 4.1, we establish equation (4.2) as desired. �

From the main theorems outlined in this paper, other versions of the inverse
integral transforms can be easily obtained.
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Corollary 4.3. Let F, γ, β and c be as in Theorem 3.4. Then we have the

following a table.

Table 1. Some relations

Some relations Formulas

Inverse transform 1 F−1
γ,β = Tβc ◦ Fi

γ
β , 1β

Inverse transform 2 F−1
i
γ
β , 1β

= Tc ◦ Fγ,β

Composition 1 (Fγ,β ◦ Fi
γ
β , 1β

)−1(F )(y) = Tc(F )(y) = F (y + ca)

Composition 2 (Fi
γ
β , 1β

◦ Fγ,β)
−1(F )(y) = Tβc(F )(y) = F (y + βca)

The following lemma was established in [10, Lemma 3.8].

Lemma 4.4. Under the hypotheses of Theorem 3.2, we have
∫

Ca,b[0,T ]

F (γx+ βy + ca)dµ(x)(4.3)

= exp

{

−c2 + 2cγ

2γ2
(
a′

b′
, a′)

}
∫

Ca,b[0,T ]

F (γx+ βy) exp

{

c

γ
〈a

′

b′
, x〉

}

dµ(x).

To obtain expressions just one integral transform with respect to the inverse
integral transform, we need the following lemma.

Lemma 4.5. Let F ∈ A. Then for all (γ, β) ∈ G and for all complex number

c,

(4.4) Fγ,β(Tc(F ))(y) = exp

{

−c2 + 2cγ

2γ2
(
a′

b′
, a′)− cβ

γ2
〈a

′

b′
, y〉

}

Fγ,β(F
∗
c/γ2)(y)

for y ∈ Ca,b[0, T ], where F ∗
c (x) = F (x) exp{c〈a′

b′
, x〉}.

Proof. Using equation (4.3), it follows that for y ∈ Ca,b[0, T ],

Fγ,β(Tc(F ))(y)

=

∫

Ca,b[0,T ]

F (γx+ βy + ca)dµ(x)

= exp

{

−c2 + 2cγ

2γ2
(
a′

b′
, a′)

}
∫

Ca,b[0,T ]

F (γx+ βy) exp

{

c

γ
〈a

′

b′
, x〉

}

dµ(x).

On the other hand, using equation (2.1), it follows that for y ∈ Ca,b[0, T ],

Fγ,β(F
∗
c/γ2)(y) = exp

{

cβ

γ2
〈a

′

b′
, y〉

}
∫

Ca,b[0,T ]

F (γx+ βy) exp

{

c

γ
〈a

′

b′
, x〉

}

dµ(x).

It implies that
∫

Ca,b[0,T ]

F (γx+ βy) exp

{

c

γ
〈a

′

b′
, x〉

}

dµ(x) = exp

{

−cβ

γ2
〈a

′

b′
, y〉

}

Fγ,β(F
∗
c/γ2)(y),
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which completes the proof of Lemma 4.5 as desired. �

We hoped that the inverse integral transform was presented a single integral
transform. However it is impossible (as see Section 5 below). But, we can
obtain a representation which looks like a single integral transform with some
weighted.

Theorem 4.6. Let F, γ, β and c be as in Theorem 4.2. Then

(4.5) F−1
γ,β(F )(y) = exp

{

(
a′

b′
, a′)− 1 + i

γ
〈a

′

b′
, y〉

}

Fi γ
β , 1β

(F ∗
c1
)(y)

and

(4.6) F−1
i γ
β , 1β

(F )(y) = exp

{

(
a′

b′
, a′) +

β(1 + i)

γ
〈a

′

b′
, y〉

}

Fγ,β(F
∗
c2
)(y)

for y ∈ Ca,b[0, T ], where c1 = β(1+i)
γ

and c2 = − 1+i
γ
.

Proof. Previous theorems, we established that F−1
γ,β = Fi

γ
β , 1β

◦ Tc and F−1
i γ
β , 1β

=

Fγ,β ◦ Tcβ. First, by replacing γ and β with iγ
β

and 1
β
in equation (4.4), and

then simple calculations with c = − γ
β
(1 + i),

−c2 + 2cγ

2γ2
(
a′

b′
, a′)− cβ

γ2
〈a

′

b′
, y〉 and c/γ2

become

(
a′

b′
, a′)− 1 + i

γ
〈a

′

b′
, y〉 and β

γ
(1 + i)

and hence we obtain equation (4.5) as desired. Similar method in previous
proceed, by replacing c with cβ in equation (4.4), and then simple calculations
with cβ = −γ(1 + i), we also obtain equation (4.6) as desired. �

Remark 4.7. In the setting of one-parameter Wiener space C0[0, T ] (i.e., where
a(t) ≡ 0 and b(t) = t on [0, T ] in our research), all results and formulas [4, 6,
13, 14] are special cases of our results and formulas in this paper.

5. Further results

We finish this paper by giving several applications as remarks. First, we
have three potential formulations for the integral transform. As such, we can
ask the following questions;

(1) Is there a pair (γ, β) so that

(5.1) Fγ2,β2
(Fγ1,β1

F )(y) = Fγ,β(F )(y)

for y ∈ Ca,b[0, T ]?
(2) Is there a pair (γ, β) and complex number c so that

(5.2) Fγ2,β2
(Fγ1,β1

F )(y) = Fγ,β(Tc(F ))(y)

for y ∈ Ca,b[0, T ]?



SOME EXPRESSIONS FOR THE INVERSE INTEGRAL TRANSFORM 1271

(3) Are there pairs (γ1, β1) and (γ2, β2) so that

(5.3) Fγ2,β2
(Fγ1,β1

F )(y) = Fγ1,β1
(Fγ2,β2

F )(y)

for y ∈ Ca,b[0, T ]?
In fact, the answer to questions (1) and (3) is negative. While the answer to

question (2) is positive, as we will demonstrate below. For the sake of simplicity,
we state formulas without of conditions for the existences.

Remark 5.1. Let F ∈ A be a functional defined on Ka,b[0, T ]. Then

(5.4) Fγ2,β2
(Fγ1,β1

F )(y) = Fγ′,β′(Tc(F ))(y)

for y ∈ Ka,b[0, T ], with γ′ =
√

γ2
1 + β2

1γ
2
2 , β

′ = β1β2 and c = γ1 + β1γ2 −
√

γ2
1 + β2

1γ
2
2 . However, γ1 is not zero and thus c must not be zero. Thus the

answer to question (1) is negative and the answer to question (2) is positive.

Remark 5.2. Let F ∈ A be a functional defined on Ka,b[0, T ]. Then

(5.5) Fγ2,β2
(Fγ1,β1

F )(y) = Fγ′,β′(Tc1(F ))(y)

and

(5.6) Fγ1,β1
(Fγ2,β2

F )(y) = Fγ′,β′(Tc2(F ))(y)

for y ∈ Ka,b[0, T ], with γ′ =
√

γ2
1 + β2

1γ
2
2 , β′ = β1β2, γ′′ =

√

γ2
2 + β2

2γ
2
1 ,

β′′ = β1β2,c1 = γ1 + β1γ2 −
√

γ2
1 + β2

1γ
2
2 and c2 = γ2 + β2γ1 −

√

γ2
2 + β2

2γ
2
1 .

However the system
{

γ2
1 + β2

1γ
2
2 = γ2

2 + β2
2γ

2
1

γ1 + β1γ2 −
√

γ2
1 + β2

1γ
2
2 = γ2 + β2γ1 −

√

γ2
2 + β2

2γ
2
1

has no solution except the trivial solution. Thus the answer to question (3) is
negative.

The following remark tells us that all answers to questions (1), (2) and (3)
are positive in the setting of Wiener space. Theses formulas were appeared in
[6, 9].

Remark 5.3. In the setting of Wiener space (i.e., in the case where a(t) ≡ 0
and b(t) = t on [0, T ] in our research),

(5.7) Fγ2,β2
(Fγ1,β1

F )(y) = Fγ′,β′(F )(y) = Fγ1,β1
(Fγ2,β2

F )(y)

for y ∈ C0[0, T ], with γ′ =
√

γ2
1 + β2

1γ
2
2 and β′ = β1β2 if γ2

j + β2
j = 1, j = 1, 2.

We close this paper by giving some conclusions.
In [14, 16], the authors studied the integral transform of functionals F in

L2(C0[0, T ]). They showed that for F ∈ L2(C0[0, T ]) and nonzero complex

numbers α and β with |β| ≤ 1, β 6= ±1, Re(1 − β2) > 0, α =
√

1− β2 and
−π/4 < arg(α) < π/4,

(5.8) Fα′,1/βFα,βF (y) = F (y), y ∈ C0[0, T ]
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where α′ =
√

1− 1/β2. That is to say, “F−1
α,β” is given by “Fiα/β,1/β”. In [7],

Chang et al. presented a version of inverse transform of the generalized integral
transform Fα,β as follows: for appropriate functionals F on Ka,b[0, T ],

(5.9) F−iα,1Fiα,1F−α/β,1/βFα,βF (y) = F (y)

for y ∈ Ka,b[0, T ], i.e.,

(5.10) F−1
α,β = F−iα,1Fiα,1F−α/β,1/β.

But we pointed out that for any nonzero complex numbers α1, α2, β1 and
β2, there are no nonzero complex numbers α′ and β′ such that

(5.11) Fα1,β1
Fα2,β2

= Fα′,β′ .

Hence the inverse generalized integral transform, F−1
α,β can not be expressed

as a simple integral transform. It is not easy to verify the existence of the
inverse generalized integral transform because the generalized Brownian motion
process has a drift term a(t), see Remark 5.1.

Let us return to the inverse integral transforms discussed in this paper. The-
orems 3.4 and 4.2 tell us that the inverse integral transform can be expressed
as a more simpler integral transform by using the operator Tc defined by equa-
tion (3.1) above. In particular, it also can be expressed as a simple integral
transform with appropriate weighted functionals see Theorem 4.6. By choos-
ing a(t) ≡ 0 and b(t) = t on [0, T ], the function space Ca,b[0, T ] reduces to
the Wiener space C0[0, T ] and our inverse integral transform and the inverse
integral transform introduced in [14, 16] coincide.
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