• 제목/요약/키워드: back scattering ratio

검색결과 16건 처리시간 0.025초

Nano-Scale CMOSFET에서 Contact Etch Stop Layer의 Mechanical Film Stress에 대한 소자특성 분석 (Investigation of Device Characteristics on the Mechanical Film Stress of Contact Etch Stop Layer in Nano-Scale CMOSFET)

  • 나민기;한인식;최원호;권혁민;지희환;박성형;이가원;이희덕
    • 대한전자공학회논문지SD
    • /
    • 제45권4호
    • /
    • pp.57-63
    • /
    • 2008
  • 본 논문에서는 Contact Etch Stop Layer (CESL)인 nitride film의 mechanical stress에 의해 인가되는 channel stress가 소자 특성에 미치는 영향에 대해 분석하였다. 잘 알려진 바와 같이 NMOS는 tensile stress와 PMOS에서는 compressive stress가 인가되었을 경우 drain current가 증가하였으며 그 원인을 체계적으로 분석하였다. NMOS의 경우 tensile stress가 인가됨으로써 back scattering ratio ($\tau_{sat}$)의 감소와 thermal injection velocity ($V_{inj}$)의 증가로 인해 mobility가 개선됨을 확인하였다. 또한 $\tau_{sat}$, 의 감소는 온도에 따른 mobility의 감소율이 작고, 그에 따른 mean free path ($\lambda_O$)의 감소율이 작기 때문인 것으로 확인되었다. 한편 PMOS의 compressive stress 경우에는 tensile stress에 비해 온도에 따른 mobility의 감소율이 크기 때문에 channel back scattering 현상은 심해지지만 source에서의 $V_{inj}$가 큰 폭으로 증가함으로써 mobility가 개선됨을 확인 할 수 있었다. 따라서 CES-Layer에 의해 인가된 channel stress에 따른 소자 특성의 변화는 inversion layer에서의 channel back scattering 현상과 source에서의 thermal injection velocity에 매우 의존함을 알 수 있다.

전자유압식 분사계에 의한 초고압 디젤분무의 거동에 관한 연구 (Behaviour of Ultra-High Pressure Diesel Spray on Electronic Hydraulic FuelInjection System)

  • 장세호;김준효;안수길
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.137-146
    • /
    • 1996
  • Behaviour of ultra-high pressure diesel spray and its structure in a constant-volume pressure chamber were studied with injection pressure ranging from 35 to 110MPa. Sprays were observed by using the back illumination scattering method and righ angle scattering method. The spray process mechanism were investigated with both photographs. As a result, the spray angle and air entrainment angle was larger as injection pressure and back pressure increase. It becomes clear that mean air-fuel ratio is increased by increasing the injection pressure.

  • PDF

제3세대 LPLI 엔진 연소실내 스월유동 및 희박연소 특성 해석 (Analysis of Cylinder Swirl Flow and Lean Combustion Characteristics of 3rd Generation LPLI(Liquid Phase LPG Injection) Engine)

  • 강건용;이진욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.26-33
    • /
    • 2007
  • The intake swirl motion, as one of dominant effects for an engine combustion. is very effective for turbulence enhancement during the compression process in the cylinder of 2-valve engine. Because the combustion flame speed is determined by the turbulence that is mainly generated from the mean flow of the charge air motion in intake port system. This paper describes the experimental results of swirl flow and combustion characteristics by using the oil spot method and back-scattering Laser Doppler velocimeter (LDV) in 2-valve single cylinder transparent LPG engine using the liquid phase LPG injection. For this. various intake port configurations were developed by using the flow box system and swirl ratios for different intake port configurations were determined by impulse swirl meter in a steady flow rig test. And the effects of intake swirl ratio on combustion characteristics in an LPG engine were analyzed with some analysis parameters that is swirl ratio. mean flow coefficient, swirl mean velocity fuel conversion efficiency. combustion duration and cyclic variations of indicated mean effective pressure(IMEP). As these research results, we found that the intake port configuration with swirl ratio of 2.0 that has a reasonable lean combustion stability is very suitable to an $11{\ell}$ heavy-duty LPG engine with liquid phase fuel injection system. It also has a better mean flow coefficient of 0.34 to develope a stable flame kernel and to produce high performance. This research expects to clarify major factor that effects on the design of intake port efficiently with the optimized swirl ratio for the heavy duty LPG engine.

Characterization of Poly(vinyl phosphate-b-styrene) by Solid-State $^{31}P$ NMR and Titration

  • Li, Guang-Hua;Kim, Sang-Hun;Cho, Chang-Gi;Park, Tae-Joon;Kim, Yong-Ae
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.504-509
    • /
    • 2006
  • Poly(vinyl phosphate-b-styrene) (PVPP-b-PS) block copolymers were synthesized successfully from poly(vinyl alcohol-b-styrene) (PVA-b-PS) by reaction with phosphorus oxychloride and subsequent hydrolysis. The obtained block copolymers were slightly crosslinked, and were characterized by various analytical techniques. The total phosphorus content and the ratio of the differently bound phosphorus were obtained by both solid-state $^{31}P$ NMR and pH titration, but the results differed slightly. Characterization by energy dispersion X-ray analysis (EDS) or Rutherford back scattering (RBS), on the other hand, determined the total phosphorus contents, but the results were quite different from those by solid-state $^{31}P$ NMR.

경상분지에서의 Coda파의 감쇠특성 (Characteristics of Coda Wave Attenuation in the Kyungsang Basin)

  • 김성균
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.35-40
    • /
    • 1999
  • In order to know the characteristics of attenuation of coda wave in the Kyungsang Sedimentary Basin quality factor for coda wave or coda Q is estimated from the earthquake data recorded in the KIGAM microearthquake network. The single scattering model for coda wave generation is adopted in estimating coda Q. Coda Q appears to be largely dependent on the normalized time(a) which is the ratio of elapsed time to S-wave travel time. In the present study coda Q(Qc) is estimated in the range of a=1.5-3.Q and expressed in terms of frequency(f). The deduced function in the range of 1 to 25 Hz is Qc=36.8283 f1.15095 to represent the strong dependence of coda Q on frequency. It is found that the difference of Qc between U-D N-S and E-W components is negligible, This face supports the back-scattering theory that coda were originates from scattered waves by randomly distributed heterogeneities in the crust. On the other hand it is observed that the coda Q increases with depth.

  • PDF

실리콘 웨이퍼 표면에서 X-선 산만산란에 의한 기계적 손상층의 상대 정량 평가 (Relative quantitative evaluation of mechanical damage layer by X-ray diffuse scattering in silicon wafer surface)

  • 최치영;조상희
    • 한국결정성장학회지
    • /
    • 제8권4호
    • /
    • pp.581-586
    • /
    • 1998
  • 초크랄스키 실리콘 기판의 뒷면에 형성된 기계적 손상이 미치는 효과에 대하여 고찰하였다. 기계적 손상의 정도는 레이저 여기/극초단파 반사 광전도 감쇠법에 의한 소수반송자 재결합 수명, X-선 단면 측정 및 습식 산화/선택적 식긱 방법으로 평가하였다. 그 결과, 웨이퍼 뒷면에 가해지는 기계적 손상의 세기가 강할수록 소수반송자 재결합 수명은 짧아지고, 산만 산란 정도와 X-선 과잉 강도의 적분값은 비례적으로 증가하였으며, 그 값을 Grade 1의 손상된 웨이퍼에서의 과잉 강도로 정규화하면 과잉 강도의 상대 정량비는 Geade 1:Grade 2:Grade 3 = 1:7:18.4이다.

  • PDF

겹치기 마찰교반접합 된 Al6061/HT590 합금의 기계적 특성 평가 (Evaluation of mechanical properties on friction stir lap jointed Al6061/HT590 alloys)

  • 김은혜;이광진;송국현
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.8-13
    • /
    • 2015
  • This study was carried out to evaluate mechanical properties of the jointed Al6061/HT590 alloys by friction stir welding (FSW). FSW was conducted under the conditions with tool rotating speed of 500 RPM and traveling speed of 300 mm/min., where Ar gas was introduced to prevent the materials from corrosion during the welding process. Electron back-scattering diffraction (EBSD) was used to characterize microstructures such as grain size, misorientation angle and crystal orientation. Evolution of intermetallic compounds in Al6061 during the process were examined in terms of morphology, size and aspect ratio at three distinct zones Al base material, heat affected zone and stir zone, where transmission electron microscope (TEM) was used. It was revealed that FSW gave rise to refinement of grains as well as growth of intermetallic compounds in Al6061. The morphological changes of intermetallic compounds exerted an influence on mechanical properties, resulting in occurrence of fracture in the part of the base material instead of the jointed parts (heat affected zone and stir zone). This study systematically evaluated the microstructural evolutions during the FSW for joining Al6061 with HT590 and their effect on mechanical properties.

승화법에 의한 $CdS_{0.67}Se_{0.33}$ 단결정 성장과 광전도 특성 (Growth of $CdS_{0.67}Se_{0.33}$ single crystal by sublimation method and their photoconductive characteristics)

  • 홍광준;이상열
    • 센서학회지
    • /
    • 제7권2호
    • /
    • pp.131-139
    • /
    • 1998
  • $CdS_{0.67}Se_{0.33}$ 단결정을 승화법으로 성장시켜 Laue 배면 반사법 (back refection Laue method)으로 결정성과 면의 방향이 (0001)임을 알아보았고, EDS(Energy Dispersive X-ray Spectrometer)를 이용하여 소성비가 $CdS_{0.67}Se_{0.33}$ 임을 확인하였다. Van der Pauw 법으로 Hall 효과를 측정하여 운반자 농도(carrier density)와 이동도(mobility)의 온도의존성을 연구하였으며, 이동도는 30 K에서 150 K까지는 불순물에 의한 산란 (impurity scattering)에 기인하고 있으며, 150 K에서 293 K까지는 격자 산란 (lattice scattering)에 따라 감소하였다. 또한 운반자 농도의 In n 대 (1/T)에서 구한 활성화 에너지는 0.21 eV였다. 광전도 셀(cell)의 특성으로 spectral response, 최대 허용 소비전력(maximum allowable power dissipation: MAPD), 광전류와 암전류(photocurrent/darkcurrent: pc/dc) 및 응답시간을 측정하였다. Cu 증기분위기에서 열처리한 광전도 셀의 경우 ${\gamma}$ = 0.99, pc/dc = $1.84{\times}10^{7}$, MAPD : 323mW, rise time : 9.3ms, decay time : 9.7ms로 가장 좋은 특성을 얻었다.

  • PDF

전자유압식 분사계에 의한 초고압 디젤분무의 거동에 관한 연구(II) (A Study on the Behaviour of Ultra-High Pressure Diesel Spray by Electronic Hydraulic Fuel Injection System(II))

  • 장세호;안수길
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.182-190
    • /
    • 1998
  • Behaviour of ultra-high pressure diesel spray in a constant-volume pressure chamber was studied with injection pressure ranging from 20 to 160㎫. Sprays were observed by the right angle scattering method. As a result, the spray tip penetration is first proportional to a time, and after that, it is proportional to 0.52 of the time during at the time of injection pressure and back pressure increase. An empirical correlation was made for the parameters of injection pressure, air-fuel density ratio, spray tip distance, spray angle, jet angle of spray and max. spray width.

  • PDF

분무 가시화를 통한 직분사 시스템에서 n-heptane및 propane의 분무발달특성 비교 (Comparison of Spray Characteristics of n-Heptane and Propane Using Spray Visualization in Direct Injection System)

  • 박준규;박성욱
    • 한국분무공학회지
    • /
    • 제28권1호
    • /
    • pp.32-42
    • /
    • 2023
  • In this study, spray characteristics of n-heptane and propane were investigated under different injection pressure using various imaging techniques such as Mie-scattering, DBI (diffuse back-illumination), and Schlieren imaging techniques. NI compact RIO system was used to control a test injector. Spray penetration length, length-to-width ratio and number of black pixels were calculated by using MATLAB software to compare spray characteristics of each fuel. Longer spray penetration length and higher length-to-width ratio were observed in propane spray because of flash boiling caused by high saturated vapor pressure. Spray collapse occurred in propane spray due to the high plume-to-plume interaction. Moreover, rapid evaporation occurred in propane spray, so that nozzle tip wetting could not be observed. Rapid evaporation of propane also caused fewer residual droplets compared to n-heptane spray. Therefore, propane is advantageous in reducing the generation of soot emission from large droplets that are not atomized. However, additional evaluation should be conducted considering combustion efficiency and the possibility of deposits by nozzle tip icing during fuel injection.