Characterization of Poly(vinyl phosphate-b-styrene) by Solid-State $^{31}P$ NMR and Titration

  • Li, Guang-Hua (Center for Advanced Functional Polymers, Department of Fiber & Polymer Engineering, Hanyang University) ;
  • Kim, Sang-Hun (Center for Advanced Functional Polymers, Department of Fiber & Polymer Engineering, Hanyang University) ;
  • Cho, Chang-Gi (Center for Advanced Functional Polymers, Department of Fiber & Polymer Engineering, Hanyang University) ;
  • Park, Tae-Joon (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Kim, Yong-Ae (Department of Chemistry, Hankuk University of Foreign Studies)
  • Published : 2006.10.31

Abstract

Poly(vinyl phosphate-b-styrene) (PVPP-b-PS) block copolymers were synthesized successfully from poly(vinyl alcohol-b-styrene) (PVA-b-PS) by reaction with phosphorus oxychloride and subsequent hydrolysis. The obtained block copolymers were slightly crosslinked, and were characterized by various analytical techniques. The total phosphorus content and the ratio of the differently bound phosphorus were obtained by both solid-state $^{31}P$ NMR and pH titration, but the results differed slightly. Characterization by energy dispersion X-ray analysis (EDS) or Rutherford back scattering (RBS), on the other hand, determined the total phosphorus contents, but the results were quite different from those by solid-state $^{31}P$ NMR.

Keywords

References

  1. I. Gitsov and J. M. J. Frechet, J. Am. Chem. Soc., 118, 3785 (1996) https://doi.org/10.1021/ja9542348
  2. Q. Zhang, E. E. Remsen, and K. Wooley, J. Am. Chem. Soc., 122, 3642 (2000) https://doi.org/10.1021/ja993941o
  3. D. Batt-Coutrot, D. M. Haddleton, A. P. Jarvis, and R. L. Kelly, Eur. Polym. J., 39, 2243 (2003) https://doi.org/10.1016/S0014-3057(03)00179-4
  4. G. H. Li, C. H. Lee, Y. M. Lee, and C. G. Cho, Solid State Ionics, 177, 1083 (2006) https://doi.org/10.1016/j.ssi.2006.03.003
  5. B. S. Pivovar, Y. Wang, and E. L. Cussler, J. Membr. Sci., 154, 155 (1999) https://doi.org/10.1016/S0376-7388(98)00264-6
  6. J. W. Rhim, S. W. Lee, and Y. K. Kim, J. Appl. Polym. Sci., 85, 1867 (2002) https://doi.org/10.1002/app.10735
  7. D. S. Kim, H. B. Park, C. H. Lee, Y. M. Lee, G. Y. Moon, S. Y. Nam, H. S. Hwang, T. I. Yun, and J. W. Rhim, Macromol. Res., 13, 314 (2005) https://doi.org/10.1007/BF03218459
  8. G. H. Li and C. G. Cho, Macromol. Res., 10, 339 (2002) https://doi.org/10.1007/BF03218328
  9. G. H. Li and C. G. Cho, Colloid & Polymer Science, 283, 946 (2005) https://doi.org/10.1007/s00396-004-1242-9
  10. G. C. Daul, J. D. Reid, and R. M. Reinhardt, Ind. Eng. Chem., 46, 1042 (1954) https://doi.org/10.1021/ie50533a061
  11. B. Smitha, S. Sridhar, and A. A. Khan, Macromolecules, 37, 2233 (2004) https://doi.org/10.1021/ma0355913
  12. J. Zou, Y. Zhao, and W. Shi, J. Membr. Sci., 245, 35 (2004) https://doi.org/10.1016/j.memsci.2004.07.015
  13. M. Mehring, A. Pines, W. K. Rhim, and J. S. Waugh, J. Chem. Phys., 54, 3239 (1971) https://doi.org/10.1063/1.1675324
  14. J. A. Pople, H. B. Schneider, and H. Bernstein, High-Resolution NMR Spectroscopy, McGraw-Hill, New York, 1959
  15. E. D. Becker, High Resolution NMR. Theory and Chemical Applications, 2nd Ed., Academic Press, New York, 1980
  16. E. R. Andrew, Prog. Nucl. Magn. Reson. Spec., 8, 1 (1972) https://doi.org/10.1016/0079-6565(71)80001-8
  17. A. Ide-Ektessabi, T. Yamaguchi, and Y. Tanaka, Nuclear Instruments and Methods in Physics Research B, 241, 685 (2005) https://doi.org/10.1016/j.nimb.2005.07.165
  18. L. Xiao, H. Zhang, E. Scanlon, L. S. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, and B. C. Benicewicz, Chem. Mater., 17, 5328 (2005) https://doi.org/10.1021/cm050831+
  19. J. L. Acosta, J. L. Garcia, A. Linares, and M. J. Casanova, Polym. Int., 49, 1534 (2000) https://doi.org/10.1002/1097-0126(200011)49:11<1534::AID-PI566>3.0.CO;2-7