• 제목/요약/키워드: approximation properties

검색결과 382건 처리시간 0.02초

High concentration ratio approximation of linear effective properties of materials with cubic inclusions

  • Mejak, George
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.61-77
    • /
    • 2018
  • This paper establish a high concentration ratio approximation of linear elastic properties of materials with periodic microstructure with cubic inclusions. The approximation is derived using first few terms of power series expansion of the solution of the equivalent eigenstrain problem with a homogeneous eigenstrain approximation. Viability of the approximation at high concentration ratios is proved by comparison with a numerical solution of the homogenization problem. To this end some theoretical result of symmetry properties of the homogenization problem are given. Using these results efficient numerical computation on a reduced computational domain is presented.

ON THE DEGREE OF APPROXIMATION FOR BIVARIATE LUPAS TYPE OPERATORS

  • Deo, Naokant
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1101-1116
    • /
    • 2010
  • The aim of this paper is to give some simultaneous approximation properties as well as differential properties, Voronovskaya type theorem, several asymptotic formulae for the partial derivative and the degree of approximation for two dimensional Lupas type operators.

The Properties of L-lower Approximation Operators

  • Kim, Yong Chan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권1호
    • /
    • pp.57-65
    • /
    • 2014
  • In this paper, we investigate the properties of L-lower approximation operators as a generalization of fuzzy rough set in complete residuated lattices. We study relations lower (upper, join meet, meet join) approximation operators and Alexandrov L-topologies. Moreover, we give their examples as approximation operators induced by various L-fuzzy relations.

A NOTE ON APPROXIMATION PROPERTIES OF BANACH SPACES

  • Cho, Chong-Man
    • Communications of the Korean Mathematical Society
    • /
    • 제9권2호
    • /
    • pp.293-298
    • /
    • 1994
  • It is well known that the approximation property and the compact approximation property are not hereditary properties; that is, a closed subspace M of a Banach space X with the (compact) approximation property need not have the (compact) approximation property. In 1973, A. Davie [2] proved that for each 2 < p < $\infty$, there is a closed subspace $Y_{p}$ of $\ell_{p}$ which does not have the approximation property. In fact, the space Davie constructed even fails to have a weaker property, the compact approximation property. In 1991, A. Lima [12] proved that if X is a Banach space with the approximation property and a closed subspace M of X is locally $\lambda$-complemented in X for some $1\leq\lambda < $\infty$, then M has the approximation property.(omitted)

  • PDF

HIGH ACCURACY POINTS OF WAVELET APPROXIMATION

  • Kwon, Soon-Geol
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.69-78
    • /
    • 2009
  • The accuracy of wavelet approximation at resolution h = $2^{-k}$ to a smooth function f is limited by O($h^M$), where M is the number of vanishing moments of the mother wavelet ${\psi}$; that is, the approximation order of wavelet approximation is M - 1. High accuracy points of wavelet approximation are of interest in some applications such as signal processing and numerical approximation. In this paper, we prove the scaling and translating properties of high accuracy points of wavelet approximation. To illustrate the results in this paper, we also present two examples of high accuracy points of wavelet approximation.

  • PDF

GEOMETRIC AND APPROXIMATION PROPERTIES OF GENERALIZED SINGULAR INTEGRALS IN THE UNIT DISK

  • Anastassiou George A.;Gal Sorin G.
    • Journal of the Korean Mathematical Society
    • /
    • 제43권2호
    • /
    • pp.425-443
    • /
    • 2006
  • The aim of this paper is to obtain several results in approximation by Jackson-type generalizations of complex Picard, Poisson-Cauchy and Gauss-Weierstrass singular integrals in terms of higher order moduli of smoothness. In addition, these generalized integrals preserve some sufficient conditions for starlikeness and univalence of analytic functions. Also approximation results for vector-valued functions defined on the unit disk are given.

Szász-Kantorovich Type Operators Based on Charlier Polynomials

  • Kajla, Arun;Agrawal, Purshottam Narain
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.877-897
    • /
    • 2016
  • In the present article, we study some approximation properties of the Kantorovich type generalization of $Sz{\acute{a}}sz$ type operators involving Charlier polynomials introduced by S. Varma and F. Taşdelen (Math. Comput. Modelling, 56 (5-6) (2012) 108-112). First, we establish approximation in a Lipschitz type space, weighted approximation theorems and A-statistical convergence properties for these operators. Then, we obtain the rate of approximation of functions having derivatives of bounded variation.

THE SEPARABLE WEAK BOUNDED APPROXIMATION PROPERTY

  • Lee, Keun Young
    • Bulletin of the Korean Mathematical Society
    • /
    • 제52권1호
    • /
    • pp.69-83
    • /
    • 2015
  • In this paper we introduce and study the separable weak bounded approximation properties which is strictly stronger than the approximation property and but weaker than the bounded approximation property. It provides new sufficient conditions for the metric approximation property for a dual Banach space.

APPROXIMATION PROPERTIES OF PAIRS OF SUBSPACES

  • Lee, Keun Young
    • Bulletin of the Korean Mathematical Society
    • /
    • 제56권3호
    • /
    • pp.563-568
    • /
    • 2019
  • This study is concerned with the approximation properties of pairs. For ${\lambda}{\geq}1$, we prove that given a Banach space X and a closed subspace $Z_0$, if the pair ($X,Z_0$) has the ${\lambda}$-bounded approximation property (${\lambda}$-BAP), then for every ideal Z containing $Z_0$, the pair ($Z,Z_0$) has the ${\lambda}$-BAP; further, if Z is a closed subspace of X and the pair (X, Z) has the ${\lambda}$-BAP, then for every separable subspace $Y_0$ of X, there exists a separable closed subspace Y containing $Y_0$ such that the pair ($Y,Y{\cap}Z$) has the ${\lambda}$-BAP. We also prove that if Z is a separable closed subspace of X, then the pair (X, Z) has the ${\lambda}$-BAP if and only if for every separable subspace $Y_0$ of X, there exists a separable closed subspace Y containing $Y_0{\cup}Z$ such that the pair (Y, Z) has the ${\lambda}$-BAP.