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THE SEPARABLE WEAK BOUNDED

APPROXIMATION PROPERTY

Keun Young Lee

Abstract. In this paper we introduce and study the separable weak
bounded approximation properties which is strictly stronger than the ap-
proximation property and but weaker than the bounded approximation
property. It provides new sufficient conditions for the metric approxima-
tion property for a dual Banach space.

1. Introduction

Let X and Y be Banach spaces. We denote by B(X,Y ) the space of bounded
linear operators from X into Y , and by F(X,Y ), K(X,Y ), W(X,Y ), and
BS(X,Y ) its subspaces of finite rank operators, compact operators, weakly
compact operators, and separable-valued bounded linear operators.

Recall that a Banach space X is said to have the approximation property

(AP) if there exists a net (Sα) ⊂ F(X,Y ) such that Sα → IX uniformly on
compact subsets of X . If (Sα) can be chosen with supα ‖Sα‖ ≤ 1, then X is
said to have the metric approximation property (MAP). The following is a long
standing open problem [1].

The Metric Approximation Problem. Does the approximation property

of the dual space X∗ of a Banach space X imply the metric approximation

property of X∗?

Thanks to Grothendieck, he provides an affirmative answer to the above
problem in the case that X∗ is separable. Many people in this field have
consider the problem, but not much progress has been obtained (see [3, 8, 9,
12]). The following theorem is the most far-reaching result on this problem.

Theorem 1 ([13, Theorem 5.50]). Let X be a Banach space such that X∗ or

X∗∗ has the Radon-Nikodým property. If X∗ has the approximation property,

then X∗ has the metric approximation property.
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We can have the following natural question from Theorem 1.

Question. What are other non-trivial sufficient conditions which guarantee

the metric approximation property for a dual Banach space X∗?

Our aim in this paper is to provide answers to the above question. To do
this, we introduce the separable weak metric approximation property and study
first a more general concept so called the separable weak λ-bounded approxima-

tion property. The separable weak metric approximation property is strictly
stronger than the AP and weaker than the MAP. We need the weak Radon-
Nikodým property. Recall that the weak Radon-Nikodým property is a strictly
weaker property than the Radon-Nikodým property (see [10]).

Our paper is organized as follows. In Section 2, we fix notations and in-
troduce basic facts. In Section 3, we study the separable weak λ-bounded
approximation property. Then we provide characterizations of the separable
weak λ-bounded approximation property and several properties about this. In
Section 4, we give answers to Question.

2. Preliminaries

A Banach X is said to have the Radon-Nikodým property if for each finite
measure space (Ω,Σ, µ) and each µ-continuous X-valued countably additive
vector measure F : Σ → X of bounded variation, there exists a Bochner
integrable function f : Ω → X such that F (E) =

∫

E
fdµ for all E ∈ Σ (see

[13]). A Banach space X is said to have the weak Radon-Nikodým property

if for each finite complete measure space (Ω,Σ, µ) and each µ-continuous X-
valued countably additive vector measure F : Σ → X of bounded variation,
there exists a Pettis integrable function f : Ω → X such that F (E) = (P )-
∫

E
fdµ for all E ∈ Σ (see [11]). Clearly if X has the Radon-Nikodým property,

then X has the weak Radon-Nikodým property but the converse is not true.
For example, JT ∗ has the weak Radon-Nikodým property but does not have
Radon-Nikodým property where JT is the James tree space (see [10]).

Let us fix some notations. We denote by Bw∗(X∗, Y ∗) (Bw∗w(X
∗, Y )) its

subspace of weak∗ to weak∗(weak) continuous operators. Similarly, we define
Kw∗(X∗, Y ∗) (Kw∗w(X

∗, Y )) and Fw∗(X∗, Y ∗). Furthermore, we denote by
B(X,Y ;λ) the space of bounded linear operators T from X to Y satisfying

‖T ‖ ≤ λ. Similarly, we define K(X,Y ;λ) and F(X,Y ;λ). We denote Sα
τ

−→ T
in B(X,Y ) by Sα → T uniformly on compact subsets of X .

3. The separable weak bounded approximation property

Let X be a Banach space and let 1 ≤ λ < ∞. Let us recall that X is said
to have the λ-bounded approximation property (λ-BAP) if there exists a net

(Sα) ⊂ F(X,X) such that supα ‖Sα‖ ≤ λ and Sα
τ

−→ IX .

Definition 3.1. A Banach space X is said to have the separable weak λ-
bounded approximation property (s-weak λ-BAP) if for every separable Banach
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space Y and T ∈ B(Y,X ; 1),

IX ∈ {S ∈ F(X,X) : ‖ST ‖ ≤ λ}
τ
.

If λ = 1, then we say that X has the separable weak metric approximation
property. Also we say that X has the separable weak bounded approximation
property (s-weak-BAP) if X has the s-weak λ-BAP for some λ.

Let us start with following simple observations. Given two properties P1

and P2, P1 ≥ P2 means that P1 is stronger than P2.

Proposition 3.2. We have λ-BAP ≥ s-weak λ-BAP. Furthermore, we obtain

that s-weak BAP is strictly stronger than AP.

Proof. First we show that λ-BAP ≥ s-weak λ-BAP. Suppose that X has the
λ-BAP. Let Y be a separable Banach space and T ∈ B(Y,X ; 1). Then there

exists a net (Sα) ⊂ F(X,X ;λ) such that Sα
τ

−→ IX . Then we have ‖SαT ‖ ≤ λ,
hence X has the s-weak λ-BAP.

For s-weak BAP ≥ AP, it is clear. Finally, let X be the Figiel and Johnson
space (see [4]). Then X is a separable Banach space and has the AP, but it
does not have the BAP. Hence we have

IX /∈ F(X,X ;λ)
τ

for all λ ≥ 1. Since X is separable, X does not have the s-weak BAP. �

Remark 3.3. We do not know whether the s-weak BAP and the BAP are
different properties. We conjecture that they are.

We now are going to investigate the characterization of the s-weak λ-BAP. To
obtain this characterization, we need following lemmas. Recall that XK is the
Davis-Figiel-Johnson-Pelczynski construction where K is a closed absolutely
convex subset of BX (see [8]).

Lemma 3.4. Suppose that (V, τ) is a locally convex space and x ∈ V . If C is

a balanced convex subset of V , then x ∈ C
τ
if and only if for every f ∈ (V, τ)∗

|f(x)| ≤ sup
y∈C

|f(y)|.

Proof. By continuity the “only if” part is clear. To show the “if” part, suppose
to the contrary that x /∈ C

τ
. Then, by the separation theorem, there exist

f ∈ (V, τ)∗ and t ∈ R such that Ref(x) > t > Ref(y) for all y ∈ C. Since C is
balanced,

|f(x)| > t ≥ sup
y∈C

Ref(y) = sup
y∈C

|f(y)|.

This completes the proof. �

Lemma 3.5. Let K be a closed absolutely convex subset of BX and Z be XK .

Then for every Banach space Y

F(Z, Y ) ⊂ {SJ : S ∈ F(X,Y )},
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where J : Z → X is the identity embedding.

Proof. Let T =
∑n

k=1 ϕk(·)yk ∈ F(Z, Y ) and ε > 0. We may assume that
∑n

k=1 ‖yk‖ = 1. Since J∗∗ : Z∗∗ → X∗∗ is injective, we have J∗(X∗) = Z∗.
Then there exist x∗

1, . . . , x
∗
n ∈ X∗ so that

‖ϕk − J∗(x∗
k)‖ < ε

for k = 1, . . . , n. Consider S =
∑n

k=1 x
∗
k(·)yk ∈ F(X,Y ). Then we obtain

‖T −SJ‖ =
∥

∥

∥

n
∑

k=1

ϕk(·)yk−
n
∑

k=1

x∗
kJ(·)yk

∥

∥

∥
=

∥

∥

∥

n
∑

k=1

ϕk(·)yk−
n
∑

k=1

J∗x∗
k(·)yk

∥

∥

∥
< ε.

Hence T ∈ {SJ : S ∈ F(X,Y )}. �

Lemma 3.6 ([8, Theorem 2.2]). If T : Y → X is separably valued, then there

exists a separable Banach space Z = XK , R : Y → Z, and J : Z → X so that

T = JR, Ry = Ty for every y ∈ Y , J is the inclusion map, and ‖T ‖ = ‖R‖,

‖J‖ = 1 where K is T (BY (0, 1/‖T ‖)).

Theorem 3.7. Let X be a Banach space and let 1 ≤ λ < ∞. The following

are equivalent.

(a) X has the s-weak λ-BAP.
(b) For every separable Banach space Y , we have

B(Y,X ; 1) ⊂ F(Y,X ;λ)
τ
.

(c) For every Banach space Y and T ∈ BS(Y,X ; 1), we have

T ∈ {ST : S ∈ F(X,X) : ‖ST ‖ ≤ λ}
τ
.

(d) For every Banach space Y and T ∈ BS(Y,X ; 1), we have

IX ∈ {S ∈ F(X,X) : ‖ST ‖ ≤ λ}
τ
.

Proof. (a)⇒(b) and (d)⇒(a) are clear.
(b)⇒(c) Let Y be a Banach space and let T ∈ BS(Y,X ; 1). By Lemma 3.6,

there exist a separable Banach space Z, R : Y → Z, and J : Z → X such that
T = JR, Ry = Ty for every y ∈ Y , J is the inclusion mapping, ‖T ‖ = ‖R‖,
and ‖J‖ = 1. By the assumption, we have

J ∈ F(Z,X ;λ)
τ
.

By Lemma 3.5, we have

F(Z,X ;λ) ⊆ {SJ : S ∈ F(Z,X); ‖SJ‖ ≤ λ},

hence we obtain

J ∈ F(Z,X ;λ)
τ
= {SJ : S ∈ F(X,X); ‖SJ‖ ≤ λ}

τ
.
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Then there exists a net (Sα) in F(X,X) such that supα ‖SαJ‖ ≤ λ and

SαJ
τ

−→ J . For every compact K ⊂ Y

sup
y∈K

‖SαTy − Ty‖ = sup
y∈K

‖SαJRy − JRy‖ → 0.

Further, for every α

‖SαT ‖ = sup
y∈K

‖SαJRy‖ ≤ ‖SαJ‖ sup
y∈BY

‖Ry‖ ≤ λ‖R‖ = λ‖T ‖ ≤ λ.

Hence we have

T ∈ {ST : S ∈ F(X,X), ‖ST ‖ ≤ λ}
τ
.

(c)⇒(d) Let Y be a Banach space and T be in BS(Y,X ; 1). Let (xn) and
(x∗

n) be sequences in X and X∗, respectively, so that
∑∞

n=1 ‖x
∗
n‖‖xn‖ < ∞.

We may assume that for every n ‖xn‖ ≤ 1, xn → 0 and
∑∞

n=1 ‖x
∗
n‖ < ∞. Now

let

K = abconv{(xn)∞n=1 ∪ T (BY )}.

Since K is a separable subset of X , by the factorization lemma [8], there exists
a Banach space Z such that the identity embedding J ∈ BS(Z,X), ‖J‖ ≤ 1,
and K ⊂ J(BZ). By the assumption (c), we have

(3.1) J ∈ {SJ : S ∈ F(X,X), ‖SJ‖ ≤ λ}
τ
⊂ B(Z,X).

Since
∑

n x
∗
n(·)xn ∈ (B(Z,X), τ)∗, by (3.1) and Lemma 3.4, we obtain

∣

∣

∣

∞
∑

n=1

x∗
n(xn)

∣

∣

∣
=

∣

∣

∣

∑

n=1

x∗
nJxn

∣

∣

∣

≤ sup
{∣

∣

∣

∑

n

x∗
n(SJxn)

∣

∣

∣
: S ∈ F(X,X), ‖SJ‖ ≤ λ

}

= sup
{∣

∣

∣

∑

n

x∗
n(Sxn)

∣

∣

∣
: S ∈ F(X,X), ‖SJ‖ ≤ λ

}

≤ sup
{∣

∣

∣

∑

n

x∗
n(Sxn)

∣

∣

∣
: S ∈ F(X,X), ‖ST ‖ ≤ λ

}

because ‖ST ‖ ≤ ‖SJ‖. Since {ST : S ∈ F(X,X), ‖ST ‖ ≤ λ} is a balanced
convex subset of B(Z,X), Lemma 3.4 implies

IX ∈ {S ∈ F(X,X) : ‖ST ‖ ≤ λ}
τ
.

�

Using Theorem 3.7, we have the following corollary.

Corollary 3.8. Let X be a Banach space and let 1 ≤ λ < ∞. The following

are equivalent.

(a) X has the s-weak λ-BAP.
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(b) For every Banach space Y , for every operator T ∈ BS(Y,X) with ‖T ‖ =
1, and for all sequence (x∗

n) ⊂ X, and (yn) ⊂ Y with
∑∞

n=1 ‖x
∗
n‖‖yn‖ < ∞,

one has the inequality

∣

∣

∣

∞
∑

n=1

x∗
nT (yn)

∣

∣

∣
≤ λ sup

‖ST‖≤1,S∈F(X,X)

∣

∣

∣

∞
∑

n=1

x∗
nST (yn)

∣

∣

∣
.

Proof. (a)⇒(b) Let Y be a Banach space and T be in BS(Y,X) with ‖T ‖ = 1.
Take (x∗

n) ⊂ X∗, and (yn) ⊂ Y with
∑∞

n=1 ‖x
∗
n‖‖yn‖ < ∞ and let ε > 0. We

chooseN ∈ N such that
∑

n>N ‖x∗
n‖‖yn‖ < ε. By the assumption and Theorem

3.7, we can choose S ∈ F(X,X) such that ‖ST ‖ ≤ λ and ‖x∗
n‖‖ST (yn) −

T (yn)‖ < ε/N for all n = 1, 2, . . . , N . We obtain

∣

∣

∣

∞
∑

n=1

x∗
nT (yn)

∣

∣

∣
≤

∣

∣

∣

N
∑

n=1

x∗
nST (yn)

∣

∣

∣
+
∣

∣

∣

N
∑

n=1

x∗
nS(yn)− x∗

nT (yn)
∣

∣

∣
+

∑

n>N

‖x∗
n‖‖yn‖

≤
∣

∣

∣

∞
∑

n=1

x∗
nST (yn)

∣

∣

∣
+ 2ε.

Hence we have
∣

∣

∣

∞
∑

n=1

x∗
nT (yn)

∣

∣

∣
≤ sup

‖ST‖≤λ,S∈F(X,X)

∣

∣

∣

∞
∑

n=1

x∗
nST (yn)

∣

∣

∣

= λ sup
‖ST‖≤1,S∈F(X,X)

∣

∣

∣

∞
∑

n=1

x∗
nST (yn)

∣

∣

∣
.

(b)⇒(a) Let Y be a Banach space and T be in BS(Y,X) with ‖T ‖ = 1. By
Theorem 3.7, we are enough to show

T ∈ {ST : S ∈ F(X,X), ‖ST ‖ ≤ λ}
τ
.

Take (x∗
n) ⊂ X∗, and (yn) ⊂ Y with

∑∞
n=1 ‖x

∗
n‖‖yn‖ < ∞. By the assumption

(b), we have

∣

∣

∣

∞
∑

n=1

x∗
nT (yn)

∣

∣

∣
≤ sup

‖ST‖≤λ,S∈F(X,X)

∣

∣

∣

∞
∑

n=1

x∗
nST (yn)

∣

∣

∣
.

Since
∑

n x
∗
n(·)yn ∈ (B(Y,X), τ)∗ and {ST : S ∈ F(X,X), ‖ST ‖ ≤ λ} is a

balanced convex subset of B(Y,X), by Lemma 3.4, we obtain

T ∈ {ST : S ∈ F(X,X), ‖ST ‖ ≤ λ}
τ
.

This completes the proof. �

Let us consider the trace mapping V from the projective tensor product
X∗⊗̂πY to F(Y,X)∗ defined by

V (u)(T ) = trace(Tu), u ∈ X∗⊗̂πY, T ∈ F(Y,X).
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This means that if u =
∑

n x
∗
n ⊗ yn with

∑

n ‖x
∗
n‖‖yn‖ < ∞, then

(V u)(T ) =
∑

n

x∗
n(T (yn)).

It is well known that
‖V u‖ ≤ ‖u‖π, u ∈ X∗⊗̂πY.

Applying the trace mapping, Grothendieck [5] proved that a Banach space
X∗ has the λ-BAP if and only if, for every Banach space Y , the trace mapping
V : X∗⊗̂πY → F(Y,X)∗ satisfies ‖u‖π ≤ λ‖V u‖ for all u ∈ X∗⊗̂πY . On the
other hand, Lima and Oja [9] showed that a Banach space X∗ has the AP if
and only if, for every separable reflexive Banach space Y , the trace mapping
V : X∗⊗̂πY → F(Y,X)∗ satisfies ‖u‖π ≤ λ‖V u‖ for all u ∈ X∗⊗̂πY . The
following theorem provides some relation between the s-weak λ-BAP and the
trace mapping.

Theorem 3.9. Suppose that for every separable Banach space Y , the trace

mapping V : X∗⊗̂πY → F(Y,X)∗ satisfies ‖u‖π ≤ λ‖V u‖ for all u ∈ X∗⊗̂πY .

Then X has the s-weak λ-BAP.

Proof. We are enough to verify condition (b) of Corollary 3.8. Let Y be a
Banach space and T be in BS(Y,X) with ‖T ‖ = 1. Take (x∗

n) ⊂ X∗, and
(yn) ⊂ Y with

∑∞
n=1 ‖x

∗
n‖‖yn‖ < ∞. We may assume that ‖yn‖ = 1, n ∈ N.

LetK = T (BY ). By Lemma 3.6, there exists a separable Banach space Z = XK

so that J : Z → X is the inclusion mapping and K ⊂ J(BZ). Let zn ∈ BZ be
such that T (yn) = J(zn), n ∈ N. Put

u =
∑

n

x∗
n ⊗ zn ∈ X∗⊗̂πZ.

Consider the trace mapping V : X∗⊗̂πZ → F(Z,X)∗. Since Z is separable, by
the assumption, we have ‖u‖π ≤ λ‖V u‖. By Lemma 3.5, we obtain that

F(Z,X ; 1) ⊂ {SJ : S ∈ F(X,X), ‖SJ‖ ≤ 1}.

Note that ‖ST ‖ ≤ ‖SJ‖ for all S ∈ F(X,X) because T (BY ) ⊆ J(BZ). Then
we have

|
∑

n

x∗
nT (yn)| = |

∞
∑

n=1

x∗
nJ(zn)| = |trace(Ju)|

≤ ‖J‖‖u‖π

≤ ‖u‖π

≤ λ‖V (u)‖ = λ sup
S∈F(Z,X;1)

|trace(Su)|

≤ λ sup
‖SJ‖≤1,S∈F(X,X)

|trace(SJu)|

≤ λ sup
‖ST‖≤1,S∈F(X,X)

|
∞
∑

n=1

x∗
nSJ(zn)|
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= λ sup
‖ST‖≤1,S∈F(X,X)

|
∞
∑

n=1

x∗
nST (yn)|

≤ λ‖V (u)‖. �

Corollary 3.10. Suppose that for every separable Banach space Y , the trace

mapping V : X∗⊗̂πY → F(Y,X)∗ is isometric. Then X has the s-weak MAP.

Also we have the following proposition.

Proposition 3.11. Let Z be an 1-complemented subspace of X. If X has the

s-weak λ-BAP, then Z has the s-weak λ-BAP.

Proof. Let Y be a separable Banach space and jZ be the inclusion mapping
from Z into X and P be the norm 1-projection from X into Z and T be in
B(Y, Z). By the assumption, there exists a net (Tα) ⊂ F(X,X) such that

supα ‖TαjZT ‖ ≤ λ and Tα
τ

−→ IX . Put Sα = PTαjZ . Then a net (Sα) is in
F(Z,Z) and we obtain

‖SαT ‖ = ‖PTαjZT ‖ ≤ ‖TαjZT ‖ ≤ λ

for all α. Finally we are enough to show that Sα
τ

−→ IZ . Let K be a compact
subset of Z and ε > 0. Then there exists β such that supy∈K ‖TαjZ(y) −
jZ(y)‖ < ε whenever α � β. Let α � β. Since PjZ(y) = y for all y ∈ Z, we
obtain

sup
y∈K

‖Sα(y)− y‖ = sup
y∈K

‖PTαjZ(y)− PjZ(y)‖ ≤ sup
y∈K

‖TαjZ(y)− jZ(y)‖ < ε.

This means that Sα
τ

−→ IZ . So we have

IZ ∈ {S ∈ F(Z,Z) : ‖ST ‖ ≤ λ}
τ
,

hence Z has the s-weak λ-BAP. �

Recall that X∗ is an 1-complemented subspace of X∗∗∗. Thus we have the
following corollary.

Corollary 3.12. If X∗∗∗ has the s-weak λ-BAP, then X∗ has the s-weak λ-
BAP.

It is useful to extend the notion of the s-weak λ-BAP with conjugate oper-
ators as follows.

Definition 3.13. A dual space X∗ of a Banach space X has the s-weak λ-
BAP with conjugate operators if for every separable Banach space Y and T ∈
BS(Y,X

∗; 1),

IX∗ ∈ {S∗ : S ∈ F(X,X), ‖S∗T ‖ ≤ λ}
τ
,

that is,

IX∗ ∈ {S ∈ Fw∗(X∗, X∗) : ‖ST ‖ ≤ λ}
τ
.

If λ = 1, then we say that X∗ has the separable weak metric approximation
property with conjugate operators.
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Lemma 3.14 ([2]). For every Banach space X,

F(X∗, X∗) ⊂ Fw∗(X∗, X∗)
τ
.

Furthermore, for each λ > 0,

F(X∗, X∗;λ)
τ
⊂ Fw∗(X∗, X∗;λ)

τ
.

Using the above lemma, we obtain the following relation.

Proposition 3.15. We have λ-BAP ≥ s-weak λ-BAP with conjugate operators

≥ s-weak λ-BAP ≥ AP in dual Banach space.

Proof. For s-weak λ-BAP with conjugate operators≥ s-weak λ-BAP, it is clear.
We show that λ-BAP ≥ s-weak λ-BAP with conjugate operators. Suppose that
X∗ has the λ-BAP. Let Y be a separable Banach space and T ∈ B(Y,X∗; 1).
By the assumption and Lemma 3.14, we have

IX∗ ∈ Fw∗(X∗, X∗;λ)
τ
.

Since ‖T ‖ ≤ 1, we obtain

IX∗ ∈ {S ∈ Fw∗(X∗, X∗) : ‖ST ‖ ≤ λ}
τ
.

�

Also we provide the following corollary which is similar to Corollary 3.8.

Corollary 3.16. Let X be a Banach space and let 1 ≤ λ < ∞. The following

are equivalent.

(a) X∗ has the s-weak λ-BAP with conjugate operators.

(b) For every Banach space Y and T ∈ BS(Y,X
∗; 1),

T ∈ {ST : S ∈ Fw∗(X∗, X∗), ‖ST ‖ ≤ λ}
τ
.

(c) For every Banach space Y , for every operator T ∈ BS(Y,X
∗) with ‖T ‖ =

1, and for all sequence (x∗∗
n ) ⊂ X, and (yn) ⊂ Y with

∑∞
n=1 ‖x

∗∗
n ‖‖yn‖ < ∞,

one has the inequality

|
∞
∑

n=1

x∗∗
n T (yn)| ≤ λ sup

‖ST‖≤1,S∈Fw∗(X∗,X∗)

|
∞
∑

n=1

x∗∗
n ST (yn)|.

Proof. (a)⇔(b) Since Fw∗(X∗, X∗) is a balanced convex subset of B(X∗, X∗),
by the proof of Theorem 3.7((c)⇒(d)), it is clear.

(b)⇔(c) It comes from the proof of Corollary 3.8. �

Remark 3.17. We do not know whether the s-weak λ-BAP with conjugate
operators, the s-weak λ-BAP and the AP are different properties in dual Banach
spaces. We conjecture that they are. However, if X∗ has the Radon-Nikodým
property, then these properties are same.
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Let us consider a Banach space Y and take T ∈ BS(Y,X
∗). We define

FT (Y,X
∗) by

FT (Y,X
∗) = {S∗T : S ∈ F(X,X)}.

Clearly, FT (Y,X
∗) is a subspace of F(Y,X∗). Then we consider the trace

mapping V from X∗∗⊗̂πY to FT (Y,X
∗)∗, defined by

V (u)(S∗T ) = trace(S∗Tu), u ∈ X∗∗⊗̂πY, S∗T ∈ FT (Y,X
∗).

This means that if u =
∑

n x
∗∗
n ⊗ yn with

∑

n ‖x
∗∗
n ‖‖yn‖ < ∞, then

(V u)(S∗T ) =
∑

n

x∗∗
n (S∗T (yn)).

We observe that ‖V u‖ ≤ ‖u‖ for all u ∈ X∗∗⊗̂πY . Also we define WT from
X∗∗⊗̂πY to B(X,X)∗ by

WT (u)(R) =
∑

n

x∗∗
n (R∗T (yn)),

whenever u =
∑

n x
∗∗
n ⊗ yn with

∑

n ‖x
∗∗
n ‖‖yn‖ < ∞ and R ∈ B(X,X).

The following theorem provides relations between s-weak λ-BAP with con-
jugate operators and the trace mapping.

Theorem 3.18. Let X be a Banach space and let 1 ≤ λ < ∞.
(a) For every Banach space Y and T ∈ BS(Y,X

∗; 1), the trace mapping

V : X∗∗⊗̂πY → FT (Y,X)∗

satisfies ‖u‖π ≤ λ‖V u‖ for all u ∈ X∗∗⊗̂πY .

(b) X∗ has the s-weak λ-BAP with conjugate operators.

(c) For every Banach space Y and T ∈ BS(Y,X
∗; 1), there exists an one-to-

one operator

Φ : FT (Y,X)∗ → B(X,X)∗

such that ‖Φ‖ ≤ λ, Φ(f)(R) = f(R∗T ) for all f ∈ FT (Y,X)∗ and all R ∈
F(X,X), and Φ ◦ V = WT , where V : X∗∗⊗̂πY → FT (Y,X)∗ is the trace

mapping.

Then we have (a)⇒(b)⇒(c).

Proof. (a)⇒(b) The proof is similar to the proof of Theorem 3.9. We are
enough to verify condition (c) of Corollary 3.16. Let Y be a Banach space
and T be in BS(Y,X

∗) with ‖T ‖ = 1. Take (x∗∗
n ) ⊂ X∗∗, and (yn) ⊂ Y

with
∑∞

n=1 ‖x
∗∗
n ‖‖yn‖ < ∞. We may assume that ‖yn‖ = 1, n ∈ N. Let

K = T (BY ). As in the proof of Theorem 3.9, there exists a separable Banach
space Z = XK so that J : Z → X is the inclusion map and K ⊂ J(BZ). Let
zn ∈ BZ be such that T (yn) = J(zn), n ∈ N. Put

u =
∑

n

x∗∗
n ⊗ zn ∈ X∗∗⊗̂πZ.
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Consider the trace mapping V : X∗∗⊗̂πZ → FJ(Z,X)∗. Then we have ‖u‖π ≤
λ‖V u‖. Note that

FJ(Z,X
∗; 1) = {S∗J : S ∈ F(X,X), ‖S∗J‖ ≤ 1}.

Then we have

|
∞
∑

n=1

x∗∗
n T (yn)| = |

∞
∑

n=1

x∗
nJ(zn)| = |trace(Ju)|

≤ ‖J‖‖u‖π ≤ ‖u‖π ≤ λ‖V (u)‖

= λ sup
S∗J∈F(Z,X∗;1)

|trace(S∗Ju)|

≤ λ sup
‖S∗T‖≤1,S∈F(X,X)

|
∞
∑

n=1

x∗∗
n S∗J(zn)|

= λ sup
‖S∗T‖≤1,S∈F(X,X)

|
∞
∑

n=1

x∗∗
n S∗T (yn)|.

(b)⇒(c) Let Y be a Banach space and T be in BS(Y,X
∗; 1). Let us take

a net (Sα) ⊂ F(X,X) such that S∗
α

τ
−→ IX∗ and ‖S∗T ‖ ≤ 1. Since (S∗

αT ) ⊂
BFT (Y,X∗)∗∗ , which is weak∗ compact, after passing to a subnet, we may assume
that limα f(S∗

αT ) exists for all f ∈ FT (Y,X
∗)∗ (see [6]). For each R ∈ B(X,X)

and f ∈ FT (Y,X
∗)∗, we define fR : FT (Y,X

∗) → F by fR(S
∗T ) = f(R∗S∗T ).

It is well defined because SR ∈ F(X,X) for all S ∈ F(X,X). Also, it is easy to
check that fR ∈ FT (Y,X

∗)∗. Then we can define Φ : FT (Y,X
∗)∗ → B(X,X)∗

by

(Φf)(R) = lim
α

fR(S
∗
αT ) = lim

α
f(R∗S∗

αT )

for each R ∈ B(X,X) and f ∈ FT (Y,X
∗)∗ because limα f(S∗

αT ) exists for
every f ∈ FT (Y,X

∗)∗. Since ‖S∗
αT ‖ ≤ λ for all α, we obtain ‖Φ‖ ≤ λ.

Now we claim that Φ(f)(R) = f(R∗T ) for all f ∈ FT (Y,X
∗)∗ and all R ∈

F(X,X). Let f be in FT (Y,X
∗)∗, R in F(X,X) and ε > 0. Since R is a finite

rank operator, R is represented by R =
∑n

k=1 x
∗
k(·)xk where (xk) ⊂ X and

(x∗
k) ⊂ X∗. We may assume that

∑n

k=1 ‖xk‖ = 1. Since S∗
α

τ
−→ IX∗ , there

exists β such that if α � β, then

‖S∗
α(x

∗
k)− x∗

k‖ < ε

for all k = 1, 2, . . . , n. Let us fix α � β. Then we have

‖R∗S∗
αT −R∗T ‖ ≤ ‖R∗S∗

α −R∗‖

= sup
x∗∈BX∗

‖
n
∑

k=1

S∗
α(x

∗
k)x

∗(xk)−
n
∑

k=1

x∗
kx

∗(xk)‖

≤
n
∑

k=1

‖S∗
α(x

∗
k)− x∗

k‖‖xk‖ < ε.
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This completes our claim. Furthermore, we observe that Φ is an one-to-one
operator.

Finally, we show that Φ ◦ V = WT , where V : X∗∗⊗̂πY → FT (Y,X)∗ is the
trace mapping. Let u = x∗∗ ⊗ y ∈ X∗∗⊗̂πY and R ∈ B(X,X). Then we have

Φ(V u)(R) = lim
α
(x∗∗ ⊗ y)(R∗S∗

αT )

= lim
α

x∗∗(R∗S∗
αT (y))

= x∗∗(R∗T (y)) = WT (u)(R). �

Remark 3.19. We do not know whether (a), (b) and (c) in Theorem 3.18 are
equivalent. We conjecture that they are.

4. Answers to Question

In this section, we give answers to Question as mentioned in Introduction.
For this work, we need the following representation of the dual space of a
compact operator space.

Theorem 4.1 ([7, Theorem 3.5]). Let X and Y be Banach spaces such that

X∗∗ or Y ∗ has the weak Radon-Nikodým property. Then, for all φ ∈ K(X,Y )∗,
there exist a sequence (((xn

i )
∗∗)mn

i=1)
∞
n=1 in X∗∗ and a sequence (((yni )

∗)mn

i=1)
∞
n=1

in Y ∗ such that

〈φ, T 〉 = lim
n→∞

mn
∑

i=1

(xn
i )

∗∗(T ∗((yni )
∗))

for all T ∈ K(X,Y ), and

lim sup
n

mn
∑

i=1

‖(xn
i )

∗∗‖‖(yni )
∗‖ ≤ ‖φ‖.

Theorem 4.2 ([7, Corollary 4.4]). Suppose that X∗ or Y ∗ has the weak Radon-

Nikodým property. Then, for all φ ∈ Kw∗w(X
∗, Y )∗, there exist a sequence

(((xn
i )

∗)mn

i=1)
∞
n=1 in X∗ and a sequence (((yni )

∗)mn

i=1)
∞
n=1 in Y ∗ and

〈φ, T 〉 = lim
n→∞

mn
∑

i=1

(yni )
∗(T ((xn

i )
∗)

for all T ∈ Kw∗w(X
∗, Y ), and

lim sup
n

mn
∑

i=1

‖(xn
i )

∗‖‖(yni )
∗‖ ≤ ‖φ‖.

The following theorem provides one sufficient condition which guarantees
the metric approximation property for a dual Banach space as mentioned. We
modify the proof in [12, p. 326].

Theorem 4.3. Let X be a Banach space and let 1 ≤ λ < ∞. Suppose that

X∗∗ has the weak Radon-Nikodým property. If X∗ has the s-weak λ-BAP, then
X∗ has the λ-BAP.
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Proof. Let IX∗ be the identity operator and K be a compact subset of X and
let ε > 0. Consider the seminorm

p(A) = sup{‖Ax∗‖ : x∗ ∈ K}, A ∈ B(X∗, X∗)

and put

C = {S : S ∈ F(X∗, X∗), p(S − IX∗) ≤ ε/2}.

Since X∗ has the AP, C is a nonempty convex subset of F(X∗, X∗). Let us fix
δ > 0 such that

δ

λ+ δ
(ε/2 + p(IX)) ≤ ε/2.

Then we are enough to show that C ∩ (λ + δ)BF(X∗,X∗) 6= ∅. Suppose to the
contrary that

C ∩ (1 + δ)BF(X∗,X∗) = ∅.

By the separation theorem, there exists φ ∈ F(X∗, X∗)∗ such that ‖φ‖ = 1
and

λ+ δ = sup{Reφ(A) : ‖A‖ ≤ λ+ δ} ≤ inf{Reφ(A) : A ∈ C}.

By Theorem 5.1 and the Hahn-Banach theorem, there exist a sequence

(((xn
i )

∗)mn

i=1)
∞
n=1

in X∗ and a sequence (((xn
i )

∗∗)mn

i=1)
∞
n=1in X∗∗ such that

〈φ, T 〉 = lim
n→∞

mn
∑

i=1

(xn
i )

∗∗(T ((xn
i )

∗))

for all T ∈ F(X∗, X∗) and

lim sup
n

mn
∑

i=1

‖(xn
i )

∗∗‖‖(xn
i )

∗‖ ≤ ‖φ‖.

Denote by C the closed absolutely convex hull in X∗ of the separable set

{((
(xn

i
)∗

‖(xn

i
)∗‖ )

mn

i=1)
∞
n=1}. By the factorization lemma [8], there exists a Banach

space Z, which is a linear subspace of X∗, such that the identity embedding
J : Z → X∗ is a separable valued operator and ‖J‖ ≤ 1. Also we have

{((
(xn

i )
∗

‖(xn
i )

∗‖
)mn

i=1)
∞
n=1} ⊂ J(BZ).

Since X∗ has the s-weak λ-BAP, there exists S ∈ F(X∗, X∗) such that ‖SJ‖ ≤
λ and p(S − IX∗) ≤ ε/2. Since S ∈ C, we obtain

λ+ δ ≤ |φ(S)|.

Put ((zni )
mn

i=1)
∞
n=1 ⊂ BZ such that (xn

i )
∗ = ‖(xn

i )
∗‖J(zni ) for all i, n. Then we

have

|φ(S)| = | lim
n→∞

mn
∑

i=1

(xn
i )

∗∗(S(xn
i )

∗)|
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= | lim
n→∞

mn
∑

i=1

‖(xn
i )

∗‖(xn
i )

∗∗(SJ(zni ))|

≤ ‖SJ‖ lim sup
n

mn
∑

i=1

‖(xn
i )

∗∗‖‖(xn
i )

∗‖

≤ ‖φ‖ < λ+ δ,

which is a contradiction. �

We also give another sufficient condition which guarantees the metric ap-
proximation property for a dual Banach space. The proof is similar to Theorem
4.3. We just replace F(X∗, X∗) by Fw∗(X∗, X∗) and apply Theorem 4.2.

Theorem 4.4. Let X be a Banach space and let 1 ≤ λ < ∞. Suppose that

X∗ has the weak Radon-Nikodým property. If X∗ has the s-weak λ-BAP with

conjugate, then X∗ has the λ-BAP.

Remark 4.5. Recall Theorem 1 in Introduction, that is, if X∗ has the AP and
the Radon-Nikodým property, then X∗ has the MAP. Hence, to verify that our
sufficient conditions are non-trivial, we need to check whether our conditions
implies conditions of Theorem 1. Fortunately, we can provide the negative
answer to the above question. Indeed, we consider the dual of James tree space
JT ∗. As we know, JT ∗ has the s-weak MAP with conjugate operators. On
the other hand, JT ∗∗ and JT ∗ have both the weak Radon-Nikodým property
but JT ∗ does not have the Radon-Nikodým property. Hence, our sufficient
conditions are non-trivial.

We finally present the following interesting problems.

Problem 1. If X∗ has the s-weak MAP, then does X∗ has s-weak MAP with

conjugate operators?

Problem 2. If X∗ has the AP and weak Radon-Nikodým property, then does

X∗ has s-weak MAP?

If Problem 1 had an affirmative answer, then we would improve Theorem
4.4. In addition, if Problem 1 and Problem 2 had an affirmative answer, then
we would improve Theorem 1 in Introduction.
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[8] Å. Lima, O. Nygraard, and E. Oja, Isometric factorization of weakly compact operators

and the approximation property, Israel J. Math. 119 (2000), 325–348.
[9] Å. Lima and E. Oja, The weak metric approximation property, Math. Ann. 333 (2005),

no. 3, 471–484.
[10] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain ℓ1

and whose duals are non-separable, Studia Math. 54 (1975), no. 1, 81–105.
[11] K. Musial, The weak Radon-Nikodým property in Banach spaces, Studia Math. 64

(1978), no. 2, 151–174.
[12] E. Oja, The impact of the Radon-Nikodým property on the weak bounded approximation

property, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. 100 (2006), 325–331.
[13] R. A. Ryan, Introduction to Tensor Product of Banach Spaces, Springer, London, 2002.

Institute for Ubiquitous Information Technology and Applications

Konkuk University

Seoul 143-701, Korea

E-mail address: northstar@kaist.ac.kr


