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ABSTRACT. In the present article, we study some approximation properties of the Kan-
torovich type generalization of Szdsz type operators involving Charlier polynomials intro-
duced by S. Varma and F. Tagdelen (Math. Comput. Modelling, 56 (5-6) (2012) 108-112).
First, we establish approximation in a Lipschitz type space, weighted approximation the-
orems and A-statistical convergence properties for these operators. Then, we obtain the
rate of approximation of functions having derivatives of bounded variation.

1. Introduction

Szész ([31]) constructed the following linear positive operators

> nx k
(1) sy =eme Y Oy (2)
k=0

where z € [0,00) and f(z) is a continuous function on [0, c0) whenever the above
sum converges uniformly. Butzer ([7]) defined and studied an integral modification
of the operators S,,. Several researchers have studied approximation properties of
these operators and their iterates (cf. [6, 13, 16, 24, 25, 32, 35]).

Jakimovski and Leviatan ([21]) introduced a generalization of Szdsz operators
involving the Appell polynomials and studied some approximation properties of
these operators. Varma et al. ([33]) constructed a generalization of Szdsz oper-
ators defined by means of the Brenke type polynomials and studied convergence
properties of these operators using the Korovkin theorem and the order of con-
vergence by using the classical second order modulus of continuity and Peetre’s
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K-functional. Altomare et al. ([4]) defined a new kind of generalization of Szész-
Mirakjan-Kantorovich operators and studied the rate of convergence by means of
suitable moduli of smoothness. Very recently, Agrawal et al. ([2]) introduced a Kan-
torovich type generalization of the ¢-Bernstein-Schurer operators and gave some
approximation properties of these operators. In [34], Varma and Tagdelen intro-
duced a link between discrete orthogonal polynomials and certain linear positive
operators. They have defined Szdsz type operators involving Charlier polynomials.
These polynomials ([18]) have the generating functions of the form

t u oo " tk
(1.2) et<1—a> :ch,g >(u)H, t| < a,
=0

where C(%) (u) = i (5) e (3) and ma = 1)y =m0 1)
for j > 1.

Varma and Tagdelen ([34]) defined the Szdsz type operators involving Charlier
polynomials as

(a—1)nz oo (a), a— Dna
Ln(f;x,a)=€_1<1—1> ch (= D) )f(fl>, a>1,22>0.

|
a = k!

Further, they considered Kantorovich type generalization of the operators L, (f;z, a)
for a function f € C[0,00) := {f € C[0,00) : |F(z)| = | [, f(s)ds| < KeP* BeR
and K € R} as follows :

(a—1)nz oo (a), a— Dnx +
R (R D S e

a k!
k=0 n

where a > 1 and z > 0 and studied the uniform convergence of L;, ,(f;x) to f
on each compact subset of [0,00) and the degree of approximation in terms of the
classical modulus of continuity.

The purpose of this paper is to establish some more approximation properties of
the operators Lj, , such as weighted approximation, A-statistical convergence and
approximation of functions with a derivative of bounded variation. The outline of
paper is as follows.

In Section 2, we present some moment estimates and a result needed to study
approximation of functions with derivatives of bounded variation. In Section 3,
we discuss the main results of the paper wherein we establish approximation in a
Lipschitz type space, weighted approximation theorems and A-statistical conver-
gence properties for the operators Ly, ,. Lastly, we obtain the rate of convergence
for functions having a derivative of bounded variation on every finite subinterval of
[0, 00), for these operators.
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2. Preliminaries

In this section we collect some properties and examples of Charlier polynomials
and some results about the operators Ly, , useful in the sequel.

Since the Charlier polynomials play substantial role in the definition of the
operators given by (1.3), we mention below some examples and properties of these
non-classical polynomials:

2
Example 2.1. Coa)(u) =1, C%a)(u) =1- 37 Céa)(u) =1- %(1 + 2a) + %
a a a
a u 3u? ud
and CS" (u) =1 — (307 +3a+2) + ~-(a+1) — 5 etc.

Proposition 2.2.([8], Ch.VI, p.170) For the function C,ia) (u), there hold the fol-
lowing:

k
-1
(i) C,(Ca) (u) is a polynomial in u of degree k with the coefficient of u* as <> ,
a

(ii) C’,(Ca) (u) can be expressed in terms of Laguerre polynomials L,(Cu_k)(a) as

A =n (L) o e g =3 (510 ) S

r=0

(iii) C,(Ca) (u) satisfies the recursion relation

—aC\ (1) = (u—k — a)CL (u) + kC\™ (u), k> 1,

(iv) C’,ia) (u) satisfies the discrete orthogonality property

3 ww)C@ ()CL (w) = a”(n)) S,
u=0

and Oy 15 the Kronecker delta.

where w(u) = ¢ '
ul

Lemma 2.3. For the operators L;, ,(f;x), we have

(i) Ly.(L2) =1,

n,a

iy T 3
(11) Ln,a(t;x) =T+ %7

e 2N 9, T 1 10
(iii) Ly, o(t%52) = 2* + n(4+ a—1> T3

2715 3 T 5 2 37
: L* t3' — 43 '7“; b - 223 - [ —
(IV) n,a( ,ZC) x° 4+ n 9 +(l—1 +TL2 2 +a_1+(a_1)2 +4n37
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2I3 3 xQ 24 11
L* t4' — 4 — 16 _ — | 63 —
(v) Ly o (t%2) =2 + - < +a—1>+n2( a—1+(a—1)2>
LT (g B9 166 151
n3 a—1 (a—1)2 (a—1)3

n

Proof. The proofs of the parts (i), (ii) and (iii) are given in ([34], Lemma 2). The
moments Ly ,(t3;2) and Lj ,(t*;2) can be computed following the same idea of

proof of ([34], Lemma 2). O
Lemma 2.4. The central moments for the operators Ly, ,(f;x) are given by
) Lialt = a30) = -
(1) Lt —2sa) = i+ o
(i) i, ((t—2)%2) = % (‘3 + - f -+ @_21)2) + %;
(iv) L, ((t—2)% ) = 2—2 (37— % t _3 1)2> + % (61 + % @ i61)2 +

6\, 15
(a—1)3 nt’

Remark 2.5. From Lemma 2.4, for each z € [0,00),77(a) > 1 and n sufficiently
large, we have

* * 1/2 n(a)x
Ll = o) < (Lot = 2)%a) " < /12,
where 7(a) is some positive constant depending on a.

The operators L, ,(f;x) also admit the integral representation

2.1) Liolfia) = [ Kitwofde

0
(a—1)nz oo C(a) (a—1

and K (z,t) := ne™! (1 - ;) Z G )nx)xnyk(t), where X, x(t) is

— k!
- . . k E+1| |
the characteristic function of the interval | —, —— | with respect to [0, 00).
n.on

Lemma 2.6. For a fized x € (0,00) and sufficiently large n, we have

() Bales) = J} Koyt < 100 0 <y <

n(a)z

(i) 1 Bi(w,2) = [ Kile, )b < - 7m2ss

r <z <o00.
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Proof. (i) Using Remark 2.5, we get

[ viz—t\’
o (z, = K (z, t)dt < K> (z,t)d
Br(29) / o< [*(Z20) Koot

r—=y

= L ((t—2)%a)(z—y) 2
n(a)z
n(x —y)?

IN

The assertion (ii) can be proved in a similar manner hence the details are omit-
ted. O

In what follows, let C'g[0,00) be the space of all real valued bounded and uni-
formly continuous functions f on [0,00), endowed with the norm ||f|[c,0,00) =

sup )If(x)\-

z€[0,00
Further, let us define the following Peetre’s K-functional:

KQ(fv 5) = inf {”f _gHC’B[O,oo) + 5”9//”03[0,00)}7 §> 0,
gew?2

where W2 = {g € Cp[0,00) : ¢, g" € Cg[0,00)} and the norm
If lw2=Il £ llcaoe) + 1 £ lcap.se) + 11" s -
By ([9], p-177, Theorem 2.4) there exists an absolute constant M > 0 such that
(2:2) Ka(f,6) < M {ws(f,v3) +min(1,6) || £ o) }
where the second order modulus of smoothness is defined as

wz(f,\/g): sup sup |f(z+2h) —2f(x+ h)+ f(z)].
0<|h|<V/3§ z€[0,00)

The usual modulus of continuity of f € Cg[0,00) is defined as

w(f,6) = sup sup [f(x+h)— f(z)]

0<|h|<6 z€[0,00)

3. Degree of Approximation

In this section we establish approximation properties in several settings. For
the reader’s convenience we split up this section in more subsections.

3.1. Lipschitz-type space
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Let us consider the Lipschitz-type space with two parameters [29]: for a1, as > 0,
we define

|t —a|*

(t+ a12? + asx)

i) = {1 € Cl0.o0) (0110 < b1 Fiante (0.9 .

where M is a positive constant and « € (0, 1].
Theorem 3.1. Let f € Lipg\(}l’@)(a). Then, for all x > 0, we have
(@) \?
L (fiz) — <M T
Lrafio) - 1)l < M ()
where ul(x) = Ly ,((t — x)? ).
Proof. First, we prove the theorem for the case a = 1. We may write
1Lya(f52) — f(2)]

(a—1l)nz oo (O %
gne—l(l_;) 5 Gl ) 7150 = s

k=0 : n
(a—1)nz oo (O 1 % .
ST s AT B
a = k! B Vt+aa? 4 agr
1

Using the fact that , and the Cauchy-Schwarz in-

<
Vi+aiz2 +asx Va2 + asx
equality, the above inequality implies that

Lo (f32) = f(2)]

a—1)nx o0 E+1
SO L NSTOTE A R ol GO L A
- \/a1$2 —+ asx a k! k

k=0 n

M a
— (- aha) < 21y ).
Vaix? +asxz a122 + asx

Thus, the result holds for & = 1. Now, let 0 < o < 1, then applying the Hoélder
inequality with p = é and q = ﬁ, we have
L7, o(f52) = f(2)]
<t (1= )T G ) [ )
=ne a k! k *

k=0 n

{(- 1>(a1)m 3 Gl i) (v ). ) - f<x>|dt)°1‘}”‘

k=0 n

S|



Szasz-Kantorovich Type Operators Based on Charlier Polynomials 883

(a—1)nz oo (a) k+1 o
_ 1 C(—=(a—1)nz) [ 1
1 k 1
e () B e RO
(a—1)nz oo (a) k+1 o
—(a—1 5 _
a1 1) A (i)
a prs k! k At+a1x? + asx
(a—1)nz oo (a) E+1 o
M 1 C;/(—(a—1 n
S ST % {nel <1 - > E g (Z(a= Dna) / [t — x|dt}
(a122 + agx)? a P k! k
M ul () g
— (L (=) < M| ———— ] .
T (a12% 4+ agx) 2 (Lt = @lsx) ((ale + agx)>
This completes the proof. O

3.2. Weighted approximation

Let Hy[0,00) be the space of all functions f defined on [0, c0) with the property
that |f(z)] < Ms¢(z), where My is a positive constant depending only on f and
#(x) = 1+ 2? is a weight function. Let Cy[0,00) be the subspace of Hy[0,00) of all

continuous functions with the norm || f ||,= sup lffcx)ﬁ and C}[0,00) = {f €
z€[0,00)
Cy[0,00) : lim f (@)l < 00 p. The usual modulus of continuity of f on [0,d] is
z—oo 1 + {)32
defined as
wy(f,0) = sup sup [f(t) — f(2)|.
[t—z| <6 z,t€[0,b]
In what follows, let || - [|c[0,q denote the sup-norm over [0, d],d > 0.

Theorem 3.2. Let f € Cy4[0,00). Then, we have

1L5.a(F) = Fllotopr < AMp(1+ b)ug (b) + 20641 (f, Vg (b)),

w 10
n(a—1) 3n2’

Proof. From [17], for z € [0,b] and ¢ > 0, we have

where ul(b) =

|f(t) — f(o)] < AM;(1+ 2?)(t — ) + (1 + |t_5x|>wb+1(f, §),6 > 0.
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Hence applying Cauchy-Schwarz inequality, we get
Ly o(f32) = f(2)]
S AN+ ) (= 052) e (7.6) 1+ 3Ll o))
< AM (1 + )y (2) + wpia (f, 0 (1 + = JT)
< AMp(1 4 b*)ul (b) + wpy1(f, 6 <1—|— ul (b )
Choosing 6 = /u2(b), we get the desired result. O

Next we give a theorem to approximate all functions in Cy[0, 00). This type of
result is discussed in [14] for locally integrable functions.

Theorem 3.3. For each f € Cy4[0,00) and S > 0, we have

|L7o(f52) = f(=)]

SO s 1
Proof. For any fixed xg > 0,
wp alFin) = S@1 L)~ @) i) - F@)
seloee) (L a2)HP T a<ey  (L+a?)MHP azz, (L a?)1HP
. |Ly,a(1+ 8% 2))|
< M Lno(f) = f e, + 1 S lls S ) e
|/ (@)
+ PRI EY L
v2ay (L +22)1FP
(31) = I+ I+ I3, say.
Since | £(z)] < [|f]ls(1 + 22), we have
he sy M@ s Ul

z>xo (1+ x2)1+5 T a>a (1+ mz)ﬁ T (1+ w%)ﬂ.

Let € > 0 be arbitrary. In view of ( [34], Theorem 3) there exists n; € N such that

Ly, o1+t )] 1 €
IS lle A+ 2278 = (128 If e ((1 +a?) + 3|f||¢>’ Vn > ny
(3.2) < Mls e n > n.

(1+22)8 3
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L}, (1 + 1% 2)] /1o €
Hence, HqubmS;E) (14 22)1+8 (+a22)7 3 Vn > ny.
2 flle €
Thus, I + I3 < — =57 + =, Vn>n,.
uS, 2+ 3 (1+l‘g)ﬂ+3’ n-=mni
/1l €
N let h to b 1 that ———= < -
ow, let us choose zy to be so large tha T+a2)° =6
Then,
2¢
(33) I+ 13 < 3 Vn > n;.

By Theorem 3.2, there exists no € N such that
* €
(34) L :H Ln,a(f) - f HC[O,%O]< ga Yn > ny.

Let ng = max(n1,n2). Then, combining (3.1)-(3.4)

L7, o (f32) — f(=)|
sup

ecooe) (L4 22)1H8 <6 Tz

This completes the proof.

Let f € CF [0,00). The weighted modulus of continuity is defined as :

o |f(x+h) — f(2)]
Af30) = IG[O,OSOI;E<h§5 L+ (z+h)2

was defined by Yiiksel and Ispir in [36].
Lemma 3.4([36]). Let f € C}[0,00), then
(i) Q(f,9) is a monotone increasing function of 0,
(i) Jim O(f;6) =0,
(iii) for each m € N, Q(f,md) < mQ(f;0),
(iv) for each A € [0,00), Q(f; A8) < (1 + A)Q(f; 6).

885

Theorem 3.5. Let f € C}[0,00). Then there exists a positive constant M (a)

depending on a such that

|L:,a<f;x) —f(l')| ca—1/2
(3.5) gpes(t;go) 11 a2) < M(a)2 (f, n ) .
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Proof. For t > 0,z € (0,00) and § > 0, by the definition of (f;J) and Lemma 3.4,

we can write

f(t) = f@)] < QA+ (@+]e—th?)Qf; ]t - 2l)
|t — |

< 2(1+x2)(1+(t—x)2)<1+ 3 >Q(f;5).

Since Ly, , is linear and positive, we have

Lna(fi2) = f@)] < 201+2%)Q(f;0)

(3.6) X {1 + Ly, o ((t = r)% x) + L. ((1 + (t — x)?) i ; 7l ; 1:> }
From Lemma 2.4 (ii), we have
(57) Ly al(t - 2)%2) < My () SE2),

where M (a) is some positive constant depending on a. Formally applying Cauchy-
Schwarz inequality, we have

L0 - x>2>t—;;x)

(3.8) < %\/L;‘L (t —x)? \/L (t—x)* \/L (t —2)?;2).

By using Lemma 2.4 (ii), there exists a positive constant Ms(a) depending on
a such that

SC2
(3.9) \/(L (=) )) < My(a) BT

n

Collecting the estimates (3.6)-(3.9) and taking M (a) = 2(14+M;(a)+/M -|-
Ms(a)\/Mi(a)), 6 = ==, we get the required result (3.5).

3.3. A-statistical convergence
Let A = (ank), (n, k € N), be a non-negative infinite summability matrix. For a

given sequence z := (xy), the A-transform of z denoted by Az : ((Ax),) is defined
as

(Am)n = Z Ank Tk,
k=1
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provided the series converges for each n. A is said to be regular if lim(Az), =
n

L whenever limz,, = L. The sequence x = (x,) is said to be a A-statistically
n

convergent to L i.e. st4 — limz, = L if for every € > 0, lim Z ank = 0.
" " kilz,—L|>e

Replacing A by C, the Cesdro matrix of order one, the A-statistical convergence
reduces to the statistical convergence. Similarly, if we take A = I, the identity
matrix, then A-statistical convergence coincides with the ordinary convergence. It
is to be noted that the concept of A—statistical convergence may also be given
in normed spaces. Many researchers have studied the statistical convergence of
different types of operators (cf. [5, 10, 11, 12, 15, 20, 26, 27, 30]). In the following
result we prove a weighted Korovkin theorem via A-statistical convergence.

Throughout this section, let us assume that e;(t) = t*,i = 0,1, 2.

Theorem 3.6. Let (ank) be a non-negative regular infinite summability matriz and
xz € [0,00). Let ¢ > 1 be a continuous function such that

¢ (x)

=0.
T—00 ¢’y (x)

Then, for all f € C}[0,00), we have

sta—tim | L () = / llo, = 0.

Proof. From ([12], p. 195, Th. 6), it is enough to show that
sta —lim || Ly, ;(e;) —ei [lp= 0.
From Lemma 2.3, we get
sta —lim | L;, 4 (c0) = €0 [ls= 0.

Again by using Lemma 2.3, we have

3 3
L* — = — _— —_
|| n,a(el) 61 ||¢ 2n xes[lol}?)o) 1+ 1'2 — 2n

For € > 0, we define the following sets:

S = A{n:f| Ly, .(e1) —e1[[¢> €}
3
= L— >
S1 {n 5 2 e},

which yields us S C Sy, hence for all n € N, we have Z ang < Z Ank-
keS keSS,
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Therefore, we get st4 — lim, || L;, ,(e1) —e1 ||¢= 0.
Similarly, we have

| LE (e2) s < 1 4+ sup —— 4 10 1
mal®2) 2 lle = a—1 Ie[lé};) 14+22  3n? zeb[ggo) 1422
1 1 10
3.10 < —(4 —.
(3.10) ~n ( taz 1) * 3n?
Now, we define the following sets:
T il L) - ea o2 of.
1 1 €
T = :—14 > —
e i) =)
10 €
T, = > = 5.
? {n 3n2 — 2}

In view of (3.10), it is clear that 7" C T7 U T, which yields us

Zank < Z Gnk + Z Ank-

keT keT, keT>

Thus, we get sta — lim,, || L}, ,(e2) — e2 [|¢= 0.
Similarly, from Lemma 2.4, we have

(3.11) sta —lm L7, ,((ex - reg))|ly =0, j=0,1,2,3,4. O

Next, we prove a Voronovskaja type theorem for the operators L, ,.

Theorem 3.7. Let A = (an) be a nonnegative regular infinite summability matriz.
Then, for every f € C}[0,00) such that f', f" € C3[0,00), we have

. * . _ 3 . 1 1"
StA - nlglgon (Ln,a(fwr) - f(l')) - if (.’E) + 5 (a — 1)f (IE),
uniformly with respect to x € [0, E], (E > 0).

Proof. Let f, f', f" € C}[0,00). For each z > 0, define a function

Jt) = f@) = (t—2)f'(z) — 5(t —2)*f" ()

O(t, z)= (¢ — )2 ifi#e
0, if t=ux.

Then
O(x,z) =0 and O(-,z) € CF[0,00).
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Thus, we have

1

F@) = f@)+ (- 2)f'(2) + 5t = )’ f" () + (t — 2)*6(t, 2).

Operating by L;, , on the above equality, we obtain
n (L, o (f;2) = f(2))
= fl(x)nLy, o((t — x);2) + f”( Ly, (¢ —2)%2) +nL; ,((t - 2)°O(t x); 2).

In view of Lemma 2.4, we get

3
(3.12) sta = lim nly  ((t = 2);2) = 3,
. _ _ 2. _ ax
(3.13) sta— lim nlpo((t = 2)%2) = =y
and

n— oo

44 3
(3.14) sta — lim n?L; ((t—2)*;z) :x2<37— — + )7
’ a
uniformly with respect to z € [0, E].

Applying Cauchy-Schwarz inequality, we have

0L o ((t = 220t 2);0) < \[n2Ls o (F = 2)%52)y /L o (O2(t,2); ).

Let 7(t,z) = ©3(t, ), we observe that n(z,z) = 0 and (-, z) € C}[0, 00). Tt follows
from [12] that

sta — lim L;kL a(@Q(t,x);x) =sta — lim L: a(n(t7x)7:€) = 77(1'7I) = 07
n—00 ’ n—00 ’

uniformly with respect to = € [0, E]. Hence, using (3.14), we obtain

(3.15) sta— lim nLy  ((t— r)?0(t,z);x) = 0,

n— oo
uniformly in 2 € [0, E]. Combining (3.12), (3.13) and (3.15), we get the desired
result. O

Now, we obtain the rate of A-statistical convergence for the operators Ly, , with
the help of Peetre’s K-functional.

Theorem 3.8. Let f € W?2. Then, we have

(3.16) sta —lim L, o (f) = fllcsio.00) = O-
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Proof. By our hypothesis, from Taylor’s expansion we find that

* * 1 *
Ln,a(f;‘r) - f(il,') = f/(x)Ln,a((el - ZC), (E) + if”(X)Ln,a((el - {,C)2; {E);
where x lies between t and x. Thus, we get

1270 () = fllesioee) < 1 a0 Lna((er =), )lles .00

1" lesfo,00 1 L. ((e1 = )%, Mlenio,0)
(3.17) = (1 + Cs, say.

_|_

Using (3.11) for e > 0, we have

lim Z ang = 0,

keN:C’lzg

li7rln Z ank = 0.

EeEN:Cy> <

[\)

From (3.17), we may write

Z ank < Z Ank + Z Ank-

keN:|Lio(f) = flloso.ee) = € keN:Clzg k:eN:ng%

Hence taking the limit as n — oo, we get the desired result.

Now we give an estimate of the rate of convergence by means of ws(f, ).

Theorem 3.9. Let f € Cg[0,0), we have

||L1>"<L7a(f) - f”CB[O,oo) < MwZ(fa V 67170,);
where 8n,0 = || Ly, o ((e1 =), )lop0,00) + 1 L5a((e1 = )%, )l[p0,00)-
Proof. Let g € W2, by (3.17), we have

1L5.0(9) = gllesoee) < HLIZ,a((el =) Mes0,0019 les0,00)
(3.18) + 311L5 o ((er = )%, )lesio,00) 19" | cs10,00)
< 6n,aHgHW2-

Using (3.18), for every f € C5[0,00) and g € W2, we get
HL;kl,a<f) - fHCB[0,00)
<Ly o(f) = Ly a(9llenio,00) + [117.0(9) = gllcsio.o) + 19 = fllenio,c)
< 2”9 - f”CB[O,oo) + HL:L,a(g) - gHCB[O,oo)
<2|lg = fllos(0,00) + On,allgllwe.
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Taking the infimum on the right hand side over all ¢ € W2, we obtain

HL:z,a(f) - fHCB[O,oo) < 2K2(fa 6n,a)-

Using (2.2), we have

[1L7,a(f) = fllesio,00) < M{“J?(fv V/0n.a) + min(1, Jn,a)llflca[o,oo)}-

From (3.11), we get st4 —1lim d,, , = 0, hence st 4 —wa2(f, /0n,a) = 0. Therefore,

we get the rate of A-statistical convergence of the sequence L;, ,(f;z) to f(z) in
the space Cg[0,00). If we take A = I, we obtain the ordinary rate of convergence
of these operators. O

3.4. Approximation properties on DBV, (0, c0)

Now, we shall estimate the rate of convergence for the operators L, , for func-
tions with derivatives of bounded variation defined on (0,00) at points x where
f/(xz+) and f'(z—) exist, we shall prove that the operators (1.3) converge to the
limit f(x). In this direction, the significant contributions have been made by (cf.
1,3, 19, 22, 23, 28] etc).

Let f € DBV,(0,00), v > 0 be the class of all functions defined on (0, c0),
having a derivative of bounded variation on every finite subinterval of (0,0c0) and
|[f() < Mt7,V t>0.

We notice that the functions f € DBV, (0, 00) possess a representation

f(x) = /Oxg(t)dt+f(0),

where g(t) is a function of bounded variation on each finite subinterval of (0, c0).
The following theorem is our main result.

Theorem 3.10. Let f € DBV, (0,00). Then, for every x € (0,00) and sufficiently
large n, we have

1Lna(fi2) = f(2)]

n(a)x

3 ! !/
< A 4) + £ +

n(a) Vn] = . z+(z/k)
+ YN =\ R
(L= v, .

ot (x/v/n)
T
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where \/Z(ff'ﬁ) denotes the total variation of f. on [a,b] and f. is defined by

{ f/(t)_f/(l'_)> O§t<$

(3.19) F1(t) = 0, t=z

/@)= fl(z4+) z<t<oo.
Proof. Since Ly, ,(1;x) = 1, for every x € (0,00) we get (see(2.1))
Liafia) = 1) = [ Kiw0(f) - )i
0
o] t
. = K "(u)dudt.
(3.20) /0 n(m,t)/x 1 (u)dudt
For any f € DBV,(0,00), by (3.19) we may write

Fu) = Fiw) 4 s (@) + @) + () — £ (e-))sgn(u - z)

2 2
(321) () () — 3 (F/(4) + ()],
where
ORI
Obviously,

/Ooo ( / (f’<U> - $<f’<w+> + f’(w—)))mu)du) K (x, t)dt = 0.

We may write
/ooo </t %(f'(“) + f’<w—))du) Kz, t)dt

= %(f’(xﬂ + f'(@=)) /O (- o) K, )t

= () + F @)L ot~ 2);)

and on an application of Cauchy-Schwarz inequality

/ K} (z,t) (/ (f'(z+) = f'(z— ))sgn(u—x)du)dt

|f z+) \/ [t — | K (x, t)dt
S%If(w)f F(@=) | Ly ollt = 2l;2)
1 1/2
<317 = o) | (Lhal(e- 0%
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Using Remark 2.1, and (3.20-3.21) we obtain the following estimate

1Ly o (fr2) = f ()]
(3.22) _4n|f’(x+>+f O+ 3592 (4 — £ (@)
+‘fo (f fa(u dU) Ki(z,t)dt + [° (fI fh(u) u>K;j(x,t)dt’.
Now, let
An(fy2) = /0 </;t f;(u)du) K (x,t)dt,
and

B, (fl,x) = /:o (/: f;(u)du) K (z,t)dt.

To complete the proof, it is sufficient to estimate the terms A, (f.,z) and
B, (f.,z). From Lemma 2.6, since fa di B (x,t) < 1 for all [a,b] C (0,00), using
integration by parts and applying Lemma 2.6 with y = « — (z/1/n), we have

A (f;<u>du) dt/s:;@,t)]

[ ﬁ;;(ar,t)f;(t)dt]

|An(f;c,z)|

< </y+/x)|f;(t)| 183 (2, Ot
< / \/ )2t + / ot
< )z —t) 2dt+jﬁ“§{ﬁ)(f;)

By the substitution of u = z/(x — t), we obtain

D) @ e i@
n(@) / (-0 2\t = T \V ()du

n

t L (z/u)
WVnl L k+1
< 1) (f1)du
ORSIRY
< = Vo)
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Thus,

! (Z ’ . /
(323)  |Au(fm)| < Vo V% Vo
k=12 <z/k> —(z/v/m)

Using integration by parts and applying Lemma 2.6 with z = = + (z/y/n), we
have

| Bn(f2 )l

I U o

I (/f w)mu—ﬂ<xwy+/m(/?fx)w)mu—ﬁﬂawﬂ
_ [(/'f mo (1 B () ] /‘f (1= B (1))t
+L (lﬁmwo@a—@@ﬁ>
_ /Zf/udulf B(, ) f/zf’t )1 - B, )t

+ f Ydu(1l — B} (z,t)) } / fata-p zt))dt‘

:/ (1)1 = B (x, 1) dt+/ Lt 1—6(a:t))dt’

o t 2t
)~2dt + / \/
7’](&)1’ [e9) t T z+(z/v/n)
= (fo)(t —z)72dt + —= (f2)-
n /z+<z/ﬁ> \m/ v \z/
By the substitution of v = z/(t — z), we get
ffH— x/v L, T
Balffoo) < / (B + T N (1)
k+1z+ L/m L, THE
< / fa)dv + NG Vo
f ) z+(z//n)

(3.24) = Z \/ V()

k=0 x
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Collecting the estimates (3.22)-(3.24), we get the required result. This completes
the proof of the theorem. O

Acknowledgement. The first author is thankful to the “University Grant Com-
mission” India for financial support to carry out the above research work.
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