A NOTE ON APPROXIMATION PROPERTIES OF BANACH SPACES

CHONG-MAN CHO

1. Introduction

It is well known that the approximation property and the compact approximation property are not hereditary properties; that is, a closed subspace M of a Banach space X with the (compact) approximation property need not have the (compact) approximation property. In 1973, A. Davie [2] proved that for each $2 , there is a closed subspace <math>Y_p$ of ℓ_p which does not have the approximation property. In fact, the space Davie constructed even fails to have a weaker property, the compact approximation property. In 1991, A. Lima [12] proved that if X is a Banach space with the approximation property and a closed subspace M of X is locally λ -complemented in X for some $1 \le \lambda < \infty$, then M has the approximation property.

In Section 3, we will see that the compact approximation property analogue of Lima's result holds for reflexive Banach spaces. In Theorem 5 we will prove that if X is a reflexive Banach space with the compact approximation property and M is locally λ -complemented in X for some $1 \le \lambda < \infty$, then M has the compact approximation property.

A. Grothendieck [7] proved that if X is a reflexive Banach space or a separable conjugate space which has the approximation property, then X has the metric approximation property. In the case of the compact approximation property, we have the following analogue; if X is a separable reflexive Banach space which has the compact approximation property, then X has the metric compact approximation property [1]. However, in general the approximation property or the bounded approximation property does not imply the metric approximation property [6].

Received July 28, 1993.

This research was supported by KOSEF grant No. 911-0102-025-2

In Theorem 4 we will prove that if a Banach space X has the approximation property and the metric compact approximation property, then X has the metric approximation property.

2. Preliminaries

If X and Y are Banach spaces, L(X,Y) (respectively, K(X,Y)) will denote the space of all bounded linear operators (respectively, compact linear operators) from X to Y. If X = Y, then we will simply write L(X) (respectively, K(X)). If X is a Banach space, B_X will denote the closed unit ball of X.

A Banach space X is said to have the approximation property (respectively, compact approximation property) if for every compact set K in X and every $\varepsilon > 0$, there exists a finite rank operator (respectively, compact linear operators) $T: X \to X$ such that $||Tx - x|| < \varepsilon$ for all $x \in K$. For $1 \le \lambda < \infty$ a Banach space X is said to have the λ -approximation property if for every compact set K in X and every $\varepsilon > 0$ there is a finite rank operator T in X such that $||T|| \le \lambda$ and $||Tx - x|| < \varepsilon$ for all $x \in K$. A Banach space X is said to have the bounded approximation property if it has the λ -approximation property for some $1 \le \lambda < \infty$. A Banach space X is said to have the metric approximation property if it has the 1-approximation property. The metric compact approximation property is defined in an obvious way.

If X and Y are Banach spaces, the space L(X,Y) endowed with the topology τ of uniform convergence on compact sets in X is a locally convex space generated by seminorms of the form $||T||_K = \sup\{||Tx||: x \in K\}$, where K ranges over all compact subsets of X. In what follows the topology τ on L(X,Y) will always denote the above topology.

Continuous linear functionals on $(L(X,Y),\tau)$ have concrete representations.

PROPOSITION 1 [13]. Let X and Y be Banach spaces. The continuous linear functionals on $(L(X,Y),\tau)$ consists of all functionals of the form

$$\Phi(T) = \sum_{i=1}^{\infty} y_i^*(Tx_i),$$

where $x_i \in X$, $y_i^* \in Y^*$ and $\sum_{i=1}^{\infty} ||x_i|| ||y_i^*|| < \infty$.

A closed subspace M of a Banach space X is said to have locally λ -complemented $(1 \le \lambda < \infty)$ if for any $\varepsilon > 0$ and a finite dimensional subspace F of X there exists an operator $T: F \to M$ such that

- (i) Tx = x for all $x \in F \cap M$
- (ii) $||T|| \le \lambda + \varepsilon$

PROPOSITION 2 [12]. If M is a closed subspace of a Banach space X, then M is locally λ -complemented if and only if there exists a norm- λ projection in X^* with kernel M^{\perp} , the annihilator of M in X^* .

3. Results

It is clear that a Banach space X has the compact approximation property (respectively, the metric compact approximation property) if and only if the identity operator on X is in the τ -closure of K(X) (respectively, $B_{K(X)}$).

The following characterization of the metric compact approximation is an analogue of a characterization of the metric approximation property [13, P.39]. The proof given below actually is the Lindenstrauss-Tzafriri proof of a characterization of the approximation property [13, P.32].

THEOREM 3. For a Banach space X, the following assertions are equivalent.

- (i) X has the metric compact approximation property.
- (ii) $B_{K(X)}$ is τ -dense in $B_{L(X)}$.
- (iii) For every choice of $\{x_n\} \subseteq X$ and $\{x_n^*\} \subseteq X^*$ such that $\sum_{n=1}^{\infty} \|x_n\| \|x_n^*\| < \infty \text{ and } |\sum_{n=1}^{\infty} x_n^*(Tx_n)| \le 1 \text{ for all } T \text{ in } B_{K(X)}$ we have $|\sum_{n=1}^{\infty} x_n^*(x_n)| \le 1$.
- (iv) $B_{K(X,Y)}$ is τ -dense in $B_{L(X,Y)}$ for every Banach space Y.
- (v) $B_{K(Y,X)}$ is τ -dense in $B_{L(Y,X)}$ for every Banach space Y.

Proof. The implication (iv) or (v) \Rightarrow (ii) is obvious. For (ii) \Rightarrow (iv) let $T \in B_{L(X,Y)}$, $\varepsilon > 0$ and K be a compact subset of X. Since $B_{K(X)}$ is τ -dense in $B_{L(X)}$, there exists S in $B_{K(X)}$ such that

$$||Sx - x|| < \varepsilon$$

for every $x \in K$. Since $||TSx - Tx|| < \epsilon$ for every $x \in K$ and TS is in $B_{K(X,Y)}$, $B_{K(X,Y)}$ is τ -dense in $B_{L(X,Y)}$. To prove (ii) \Rightarrow (v) let $T \in B_{L(Y,X)}$, $\varepsilon > 0$ and K be a compact subset of Y. Since $B_{K(X)}$ is τ -dense in $B_{L(X)}$ and T(K) is a compact subset of X, there exists $S \in B_{K(X)}$ such that

$$||Sy - y|| < \varepsilon$$

for all $y \in T(K)$. Since $||STx-Tx|| < \varepsilon$ for all $x \in K$ and $ST \in B_{K(Y,X)}$, $B_{K(Y,X)}$ is τ -dense in $B_{L(Y,X)}$. This proves that (ii) \Rightarrow (v). Suppose (i) holds. Let $T \in B_{L(X)}$ and K be a compact subset of X. Since T(K) is a compact subset of X, for any $\varepsilon > 0$ there exists $T_1 \in B_{K(X)}$ such that

$$||T_1Tx - Tx|| < \varepsilon$$

for all $x \in K$. Since $T_1T \in B_{K(X)}$, this proves the implication (i) \Rightarrow (ii). (iii) follows from (ii) and Proposition 1. So it remains to prove that (iii) implies (i).

Suppose X does not have the metric compact approximation property. Then the identity map I on X is not in the τ -closure $\overline{B_{K(X)}}^{\tau}$ of $B_{K(X)}$. Since $\overline{B_{K(X)}}^{\tau}$ is a closed convex and balanced subset in the locally convex space $(L(X), \tau)$ and does not contain the identity map I on X, by the separation theorem there is a positive number α and a continuous linear functional Φ on $(L(X), \tau)$ such that

$$|Re\Phi(T)| \leq \alpha < Re\Phi(I)$$

for all T in $B_{K(X)}$. Replacing Φ by $\frac{1}{\alpha}\Phi$, we may assume that $\alpha=1$ in the above inequality. Since $B_{K(X)}$ is balanced, we have

$$|\Phi(T)| \leq 1 < |\Phi(I)|$$

for all T in $B_{K(X)}$. Since Φ is a τ -continuous linear functional on L(X), by Proposition 1 there exist sequences $\{x_n\} \subseteq X$ and $\{x_n^*\} \subseteq X^*$ such that $\sum_{n=1}^{\infty} \|x_n\| \|x_n^*\| < \infty$ and $\Phi(T) = \sum_{n=1}^{\infty} x_n^*(Tx_n)$ for every T in L(X). Thus we have

$$\left|\sum_{n=1}^{\infty} x_n^*(Tx_n)\right| \le 1 < \left|\sum_{n=1}^{\infty} x_n^*(x_n)\right|$$

for all $T \in B_{K(X)}$. Thus (iii) does not hold and the proof of (iii) \Rightarrow (i) is complete.

We are now ready to prove the main results of this paper.

The following theorem relates the approximation property and the metric approximation property.

THEOREM 4. If X is a Banach space which has the approximation property and also the metric compact approximation property, then X has the metric approximation property.

Proof. Let F(X) denote the space of finite rank operators on X. If $T \in K(X)$, then $T(B_X)$ has the compact closure. Since X has the approximation property, given $\varepsilon > 0$ there exists a finite rank operator T_1 such that

$$||T_1y - y|| < \varepsilon$$

for all $y \in T(B_X)$. Thus $||T_1T - T|| < \varepsilon$. Since T_1T is in F(X), it follows that F(X) is dense in K(X) in the operator norm topology. Thus $B_{F(X)}$ is dense in $B_{K(X)}$ in the operator norm topology. Since the operator norm topology on L(X) is larger than the topology τ of uniform convergence on compact sets we have $\overline{B_{F(X)}}^{\tau} = \overline{B_{K(X)}}^{\tau}$. Since X has the metric compact approximation property, by Theorem 3 $\overline{B_{K(X)}}^{\tau} = B_{L(X)}$. Hence, $\overline{B_{F(X)}}^{\tau} = B_{L(X)}$ and X has the metric approximation property.

Theorem 5. Suppose X is a reflexive Banach space with the compact approximation property. If a closed subspace M of X is locally λ -complemented in X, then M has the compact approximation property. Moreover, if X has the δ -compact approximation property, then M has the $\delta\lambda$ -compact approximation property.

Proof. By Proposition 2, there exists a projection P on X^* with kernel M^{\perp} and $\|P\| = \lambda$. Then $P^*: X^{**} \to X^{**}$ has the range $M^{\perp \perp}$. Since X is reflexive, $M^{\perp \perp} = M$ and $Q = P^*$ is a projection on X with the range M and $\|Q\| = \lambda$.

Let K be a compact subset of M and $\varepsilon > 0$. Since X has the compact approximation property, there exists a compact operator $T: X \to X$ such that

$$||Tx - x|| < \frac{\varepsilon}{\lambda}$$

for all $x \in K \subseteq M$. Since the projection Q has the range M, we get that

$$||QTx - x|| < \varepsilon$$

for all $x \in K$ and QT restricted to M is in K(M). Thus M has the compact approximation property.

If $||T|| \leq \delta$, then $||QT|| \leq \delta \lambda$ and the proof is complete.

References

- C.- M. Cho and W. B. Johnson, A Characterization of subspace X of lp for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466– 470.
- 2. A. Davie, The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973), 261-266.
- 3. _____, The Banach approximation problem, J. Approx. Theory 13 (1975), 392-394.
- J. Diestel and J. Uhl, Vector measures, American Mathematical Surveys No 15, 1977.
- 5. P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973), 309-317.
- 6. T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973), 197-200.
- A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, vol. 16, Mem. Amer. Math. Soc., 1955.
- 8. P. Harmand and A. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1983), 253-264.
- 9. W. B. Johnson, Banach spaces all of whose subspaces have the approximation property, Special Topics of Applied Mathematics, North-Holland, 1980.
- 10. _____, A simple proof that the BAP implies the MAP in separable conjugate spaces, Israel Sem. on Geom. Aspects of Func. Analysis XV (1983-84), 1.1-1.4.
- 11. W. B. Johnson and A. Szankowski, Complementably universal Banach spaces, Studia Math. 58 (1976), 91-97.
- 12. A. Lima, The metric approximation property, norm-one projections and intersection property of balls, (to appear).
- 13. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, New York, 1977.

Department of Mathematics Hanyang University Seoul 133-791, Korea