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JOIN-MEET APPROXIMATION OPERATORS INDUCED

BY ALEXANDROV FUZZY TOPOLOGIES

Yong Chan Kim

Abstract. In this paper, we investigate the properties of Alexan-
drov fuzzy topologies and join-meet approximation operators. We
study fuzzy preorder, Alexandrov topologies join-meet approxima-
tion operators induced by Alexandrov fuzzy topologies. We give their
examples.

1. Introduction

Pawlak [8,9] introduced rough set theory as a formal tool to deal
with imprecision and uncertainty in data analysis. Hájek [2] introduced
a complete residuated lattice which is an algebraic structure for many
valued logic. Radzikowska [10] developed fuzzy rough sets in complete
residuated lattice. Bělohlávek [1] investigated information systems and
decision rules in complete residuated lattices. Zhang [6,7] introduced
Alexandrov L-topologies induced by fuzzy rough sets. Kim [5] investi-
gated the properties of Alexandrov topologies in complete residuated
lattices. Höhle [3] introduced L-fuzzy topologies and L-fuzzy interior
approximation operators on complete residuated lattices.

In this paper, we investigate the properties of Alexandrov fuzzy topolo-
gies and join-meet approximation operators in a sense as Höhle [3]. We
study fuzzy preorder, Alexandrov topologies join-meet approximation
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operators induced by Alexandrov fuzzy topologies. We give their exam-
ples.

2. Preliminaries

Definition 2.1. [1-3] A structure (L,∨,∧,�,→,⊥,>) is called a
complete residuated lattice iff it satisfies the following properties:

(L1) (L,∨,∧,⊥,>) is a complete lattice where ⊥ is the bottom ele-
ment and > is the top element;

(L2) (L,�,>) is a monoid;
(L3) It has an adjointness,i.e.

x ≤ y → z iff x� y ≤ z.

An operator ∗ : L → L defined by a∗ = a → ⊥ is called strong
negations if a∗∗ = a.

>x(y) =

{
>, if y = x,
⊥, otherwise.

>∗x(y) =

{
⊥, if y = x,
>, otherwise.

In this paper, we assume that (L,∨,∧,�,→,∗ ,⊥,>) be a complete
residuated lattice with a strong negation ∗.

Definition 2.2. [6,7] Let X be a set. A function eX : X ×X → L is
called a fuzzy preorder if it satisfies the following conditions

(E1) reflexive if eX(x, x) = 1 for all x ∈ X,
(E2) transitive if eX(x, y)� eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X’

Example 2.3. (1) We define a function eL : L×L→ L as eL(x, y) =
x→ y. Then eL is a fuzzy preorder on L.

(2) We define a function eLX : LX × LX → L as eLX (A,B) =∧
x∈X(A(x) → B(x)). Then eLX is a fuzzy preorder from Lemma 2.4

(9).

Lemma 2.4. [1,2] Let (L,∨,∧,�,→,∗ ,⊥,>) be a complete residuated
lattice with a strong negation ∗. For each x, y, z, xi, yi ∈ L, the following
properties hold.

(1) If y ≤ z, then x� y ≤ x� z.
(2) If y ≤ z, then x→ y ≤ x→ z and z → x ≤ y → x.
(3) x→ y = > iff x ≤ y.
(4) x→ > = > and > → x = x.
(5) x� y ≤ x ∧ y.
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(6) x� (
∨
i∈Γ yi) =

∨
i∈Γ(x� yi) and (

∨
i∈Γ xi)� y =

∨
i∈Γ(xi � y).

(7) x → (
∧
i∈Γ yi) =

∧
i∈Γ(x → yi) and (

∨
i∈Γ xi) → y =

∧
i∈Γ(xi →

y).
(8)

∨
i∈Γ xi →

∨
i∈Γ yi ≥

∧
i∈Γ(xi → yi) and

∧
i∈Γ xi →

∧
i∈Γ yi ≥∧

i∈Γ(xi → yi).
(9) (x→ y)� x ≤ y and (y → z)� (x→ y) ≤ (x→ z).
(10) x→ y ≤ (y → z)→ (x→ z) and x→ y ≤ (z → x)→ (z → y).
(11)

∧
i∈Γ x

∗
i = (

∨
i∈Γ xi)

∗ and
∨
i∈Γ x

∗
i = (

∧
i∈Γ xi)

∗.
(12) (x� y)→ z = x→ (y → z) = y → (x→ z) and (x� y)∗ = x→

y∗.
(13) x∗ → y∗ = y → x and (x→ y)∗ = x� y∗.
(14) y → z ≤ x� y → x� z.

Definition 2.5. [5] A map K : LX → LY is called a join-meet op-
erator if it satisfies the following conditions, for all A,Ai ∈ LX , and
α ∈ L,

(K1) K(α � A) = α → K(A) where (α � A)(x) = α � A(x) for each
x ∈ X,

(K2) K(
∨
i∈I Ai) =

∧
i∈I K(Ai),

(K3) K(A) ≤ A∗,
(K4) K(K∗(A)) ≥ K(A).

Definition 2.6. [4] An operator T : LX → L is called an Alexandrov
fuzzy topology on X iff it satisfies the following conditions, for all A,Ai ∈
LX , and α ∈ L,

(T1) T(αX) = > where αX(x) = α,
(T2) T(

∧
i∈ΓAi) ≥

∧
i∈ΓT(Ai) and T(

∨
i∈ΓAi) ≥

∧
i∈ΓT(Ai),

(T3) T(α�A) ≥ T(A), where (α�A)(x) = α�A(x) for each x ∈ X,
(T4) T(α→ A) ≥ T(A).

Definition 2.7. [5] A subset τ ⊂ LX is called an Alexandrov topology
if it satisfies satisfies the following conditions.

(O1) αX ∈ τ .
(O2) If Ai ∈ τ for i ∈ Γ,

∨
i∈ΓAi,

∧
i∈ΓAi ∈ τ .

(O3) α� A ∈ τ for all α ∈ L and A ∈ τ .
(O4) α→ A ∈ τ for all α ∈ L and A ∈ τ .

Remark 2.8. (1) If T : LX → L is an Alexandrov fuzzy topology.
Define T∗(A) = T(A∗). Then T∗ is an Alexandrov fuzzy topology.

(2) If T is an Alexandrov fuzzy topology on X, τ rT = {A ∈ LX |
T(A) ≥ r} is an Alexandrov topology on X and τ rT ⊂ τ sT for s ≤ r ∈ L.
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(3) If T∗ is an Alexandrov fuzzy topology on X, (τ rT )∗ = {A ∈ LX |
T∗(A) ≥ r} is an Alexandrov topology on X and (τ rT )∗ = τ rT ∗ .

3. Join-meet approximation operators induced by Alexan-
drov fuzzy topologies

Theorem 3.1. If K is a join-meet approximation operator, then τK =
{A ∈ LX | K(A) = A∗} is an Alexandrov topology on X.

Proof. (O1) Since K(>X) = ⊥X and K(α�>X) = α→ K(>X) = α∗X ,
then α∗X = K(αX). Thus αX ∈ τK.

(O2) For Ai ∈ τK for each i ∈ Γ, by (K2), K(
∨
i∈ΓAi) =

∧
i∈ΓK(Ai) =∧

i∈ΓA
∗
i . Then

∨
i∈ΓAi ∈ τK. Since K is decreasing function,

∨
i∈ΓA

∗
i =∨

i∈ΓK(Ai) = K(
∧
i∈ΓAi) ≤ (

∧
i∈ΓAi)

∗, Thus,
∨
i∈ΓAi ∈ τK.

(O3) For A ∈ τK, K(α�A) = α→ K(A) = (α�A)∗. Then α�A ∈ τK.
(O4) For A ∈ τK, since α � (α → A) ≤ A, then α → K(α → A) =

K(α � (α → A)) ≥ K(A). So, α � K(A) ≤ K(α → A) ≤ (α → A)∗ =
α� A∗. Thus (α→ A) ∈ τK.

Theorem 3.2. Let T be an Alexandrov fuzzy topology on X. Define

Rr
T (x, y) =

∧
{A(x)→ A(y) | T(A) ≥ r}.

Then the following properties hold.
(1) Rr

T is a fuzzy preorder with Rr
T ≤ Rs

T for each r ≤ s.
(2) Define KRr∗

T
: LX → LX as follows

KRr∗
T

(A)(y) =
∧
x∈X

(A(x)→ Rr∗
T (x, y)).

Then KRr∗
T

is a join-meet operator on X with KRs∗
T
≤ KRr∗

T
for each

r ≤ s.
(3) τ rT = τKRr∗

T
.

Proof. (1) Since T(B) ≥ r iffB ∈ τ rT , thenRr
T (x, y) =

∧
B∈τrT

(B(x)→
B(y)). Since Rr

T (x, x) =
∧
B∈τrT

(B(x)→ B(x)) = > and

Rr
T (x, y)�Rr

T (y, z) =
∧
B∈τrT

(B(x)→ B(y))�
∧
B∈τrT

(B(y)→ B(z))

≤
∧
B∈τrT

(B(x)→ B(y))� (B(y)→ B(z))

≤
∧
B∈τrT

(B(x)→ B(z)) = Rr
T (x, y).
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Hence Rr
T is a fuzzy preorder. For r ≤ s, since T(B) ≥ s ≥ r, we have

Rr
T ≤ Rs

T .
(2) (K1)

KRr∗
T

(α� A)(y) =
∧
x∈X((α� A)(x)→ Rr∗

T (x, y))
= α→

∧
x∈X(A(x)→ Rr∗

T (x, y)) = α→ KRr∗
T

(A)(y).

(K2)

KRr∗
T

(
∨
i∈ΓAi)(y) =

∧
x∈X(

∨
i∈ΓAi(x)→ Rr∗

T (x, y))
=
∧
i∈Γ
∧
x∈X(Ai(x)→ Rr∗

T (x, y)) =
∧
i∈ΓKRr∗

T
(Ai)(y).

(K3) KRr∗
T

(A)(y) =
∧
x∈X(A(x) → Rr∗

T (x, y)) ≤ A(x) → Rr∗
T (x, x) =

A(x)→ ⊥ = A∗(x).
(K4)

KRr∗
T

(K∗Rr∗
T

(A))(z) =
∧
y∈X(K∗Rr∗

T
(A)(y)→ Rr∗

T (y, z))

=
∧
y∈X(

∧
x∈X(A(x)→ Rr∗

T (x, y))∗ → Rr∗
T (y, z))

=
∧
y∈X(

∨
x∈X(A(x)�Rr

T (x, y))→ Rr∗
T (y, z))

=
∧
x,y∈X(A(x)→ (Rr

T (x, y))→ Rr∗
T (y, z)))

=
∧
x∈X(A(x)→

∧
y∈X(Rr

T (x, y))→ Rr∗
T (y, z)))

=
∧
x∈X(A(x)→ (

∨
y∈X(Rr

T (x, y))�Rr
T (y, z))∗)

≥
∧
x∈X(A(x)→ Rr∗

T (x, z))
= KRr∗

T
(A)(z).

Hence KRr∗
T

is a join-meet operator on X. For r ≤ s, since Rr
T ≤ Rs

T ,
then KRs∗

T
≤ KRt∗

T
.

(3) Let A ∈ τ rT . Since Rr
T (x, y) =

∧
B∈τrT

(B(x)→ B(y)),

A∗(y)�Rr
T (x, y) = A∗(y)�

∧
B∈τrT

(B(x)→ B(y))

≤ A∗(y)� (A∗(y)→ A∗(x)) ≤ A∗(x).

Thus A∗(y) ≤ Rr
T (x, y) → A∗(x) = A(x) → Rr∗

T (x, y). Then A∗ ≤
KRr∗

T
(A). By (K3), KRr∗

T
(A) = A∗;i.e.A ∈ τKRr∗

T
. So, τ rT ⊂ τKRr∗

T
.

Let A ∈ τKRr∗
T

;i.e. KRr∗
T

(A) = A∗. Then

A∗ =
∧
x∈X(A(x)→ Rr∗

T (x,−))
=
∧
x∈X(A(x)→ (

∧
B∈τrT

(B(x)→ B))∗)

=
∧
x∈X(A(x)→

∨
B∈τrT

(B(x)�B∗))

Since
∨
B∈τrT

(B(x)�B∗) ∈ (τ rT )∗ and A(x)→
∨
B∈τrT

(B(x)�B∗) ∈ (τ rT )∗,

we have A∗ ∈ (τ rT )∗;i.e A ∈ τ rT . So, τKRr∗
T
⊂ τ rT .
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Theorem 3.3. Let T be an Alexandrov fuzzy topology on X. Define

R−rT (x, y) =
∧
{B(y)→ B(x) | T(B) ≥ r}.

Then the following properties hold.
(1) R−rT is a fuzzy preorder with R−rT ≤ R−sT for each r ≤ s and

R−rT (x, y) = Rr
T ∗(x, y).

(2) KR−r∗
T

is a join-meet operator on X such that

KR−r∗
T

(A)(y) =
∧
x∈X

(A(x)→ R−r∗T (x, y)) =
∧
x∈X

(A(x)→ Rr∗
T ∗(x, y)).

(3) (τ rT )∗ = τK
R−r∗
T

= τKRr∗
T∗

.

(4) If KRri∗
T

(A) = B for all i ∈ Γ 6= ∅, then KRs∗
T

(A) = B with

s =
∨
i∈Γ ri.

(5) If K
R

−ri
T

(A) = B for all i ∈ Γ 6= ∅, then KR−s
T

(A) = B with

s =
∨
i∈Γ ri.

(6) KRr∗
T∗ (A) =

∨
{Ai | Ai ≤ A∗, T(Ai) ≥ r} for all A ∈ LX and

r ∈ L. Moreover, R−rT (x, y) = K∗Rr∗
T∗

(>x)(y), for each x, y ∈ X.

(7) KRr∗
T

(A) =
∨
{Ai | Ai ≤ A∗, T∗(Ai) ≥ r} for all A ∈ LX and

r ∈ L. Moreover, Rr
T (x, y) = K∗Rr∗

T
(>x)(y), for each x, y ∈ X.

Proof. (1) By a similar method as (1), R−rT is a fuzzy preorder. More-
over,

R−rT (x, y) =
∧
{B(y)→ B(x) | T(B) ≥ r}

=
∧
{B∗(x)→ B∗(y) | T(B∗) = T∗(B) ≥ r}

= Rr
T ∗(x, y).

(2) By (1), R−rT (x, y) =
∧
B∈τrT

(B(y)→ B(x)) is a fuzzy preorder.

(3) Let A ∈ (τ rT )∗. Then A∗ ∈ τ rT and

A∗(y)�R−rT (x, y) = A∗(y)�
∧
B∈τrT

(B(y)→ B(x))

≤ A∗(y)� (A∗(y)→ A∗(x)) ≤ A∗(x).

ThusA∗(y) ≤ R−rT (x, y)→ A∗(x) = A(x)→ R−r∗T (x, y). HenceKR−r∗
T

(A) =

A∗;i.e.A ∈ τK
R−r∗
T

. So, (τ rT )∗ ⊂ τK
R−r∗
T

.
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Let A ∈ τK
R−r∗
T

;i.e. KR−r∗
T

(A) = A∗. Then

A∗ =
∧
x∈X(A(x)→ R−r∗T (x,−))

=
∧
x∈X(A(x)→ (

∧
B∈τr

T∗
(B(x)→ B))∗)

=
∧
x∈X(A(x)→

∨
B∈τr

T∗
(B(x)�B∗))

Since
∨
B∈τrT

(B(x)� B∗) ∈ τ rT and A(x)→
∨
B∈τrT

(B(x)� B∗) ∈ τ rT , we

have A∗ ∈ τ rT ;i.e A ∈ (τ rT )∗. So, τK
R−r∗
T

⊂ (τ rT )∗.

(4) Let KRri∗
T

(A) = B for all i ∈ Γ 6= ∅. Since

KRri∗
T

(A) =
∧
x∈X

(A(x)→ (Rri
T (x,−))∗) ∈ (τ riT )∗

T∗(B) = T∗(KRri∗
T

(A)) ≥ ri, then T∗(B) ≥
∨
i∈Γ ri = s;i.e. B ∈

(τ sT )∗ = τKRs∗
T∗

;i.e. B∗ ∈ τ s∗T = τKRs∗
T

. Since KRs
T
(B∗) = B = KRri∗

T
(A) ≤

A∗, A ≤ K∗Rs
T
(B∗) = B∗. Thus

KRs∗
T

(A) ≥ KRs∗
T

(K∗Rs∗
T

(B∗)) = KRs∗
T

(B∗) = B.

Since s ≥ ri, KRs∗
T

(A) ≤ KRri∗
T

(A) = B. Thus KRs∗
T

(A) = B.

(6) For each A ∈ LX with Ai ≤ A∗, T(Ai) ≥ r, since Ai ∈ τ rT = τKRr∗
T

from Theorem 3.2(3), then

KRr∗
T

(
∨
i

Ai) =
∧
i

KRr∗
T

(Ai) =
∧
i

A∗i .

Since
∨
iAi ∈ τKRr∗

T
= τ rT iff (

∨
iAi)

∗ ∈ τKRr∗
T∗

= τ rT ∗ , then

KRr∗
T∗ ((

∨
i

Ai)
∗) = KRr∗

T∗ (
∧
i

A∗i ) =
∨
i

Ai.

Since
∧
iA
∗
i ≥ A. Thus

KRr
T∗ (A) ≥ KRr∗

T∗ (
∧
i

A∗i ) =
∨
i

Ai =
∨
{Ai | Ai ≤ A∗, T(Ai) ≥ r}.

Since KRr∗
T∗ (K∗Rr∗

T∗
(A)) = KRr∗

T∗ (A) ≤ A∗. Since

KRr∗
T∗ (A) =

∧
x∈X

(A(x)→ (Rr
T ∗(x,−))∗) ∈ τ rT

So,
∨
{Ai | Ai ≤ A∗, T(Ai) ≥ r} ≥ KRr∗

T∗ (A). Hence
∨
{Ai | Ai ≤

A, T(Ai) ≥ r} = KRr∗
T∗ (A) for all A ∈ LX and r ∈ L. Moreover,

KRr∗
T∗ (>x)(y) =

∧
z∈X(>x(z)→ Rr∗

T ∗(z, y)) = Rr∗
T ∗(x, y) = R−r∗T (x, y).



560 Yong Chan Kim

(5) and (6) are similarly proved as (4) and (7), respectively.

Theorem 3.4. Let T be an Alexandrov fuzzy topology on X. Then
the following properties hold.

(1) Define TKT
: LX → L as

TKT
(A) =

∨
{ri ∈ L | KRri∗

T
(A) = A∗}.

Then TKT
is an Alexandrov fuzzy topology on X such that TKT

= T.
(2) Define TKT∗ : LX → L as

TKT∗ (A) =
∨
{ri ∈ L | KR−ri∗

T
(A) = A∗} =

∨
{ri ∈ L | KRri∗

T∗
(A) = A∗}.

Then TKT∗ is an Alexandrov fuzzy topology on X such that TKT∗ = T∗.
(3) There exists an Alexandrov fuzzy topology Tr

K such that

Tr
K(A) = eLX (A∗,KRr∗

T
(A)).

If r ≤ s, then Ts
K ≤ Tr

K for all A ∈ LX .
(4) There exists an Alexandrov fuzzy topology T∗rK such that

T∗rK (A) = eLX (A∗,KR−r
T

(A)).

If r ≤ s, then T∗rK ≤ T∗sK for all A ∈ LX .
(5) Define TK : LX → L as

TK(A) =
∨
{r∗ ∈ L | Tr

K(A) = >}.

Then TK = T = TKT
is an Alexandrov fuzzy topology on X.

(6) Define TK∗ : LX → L as

TK∗(A) =
∨
{r∗ ∈ L | T∗rK (A) = >}.

Then TK∗ = T∗ = TKT∗ is an Alexandrov fuzzy topology on X.

Proof. (1) We will show that TKT
= T. Let KRri∗

T
(A) = A∗. Since

KRri∗
T

(A) ∈ (τ riT )∗ and T(A) = T∗(A∗) = T∗(KRri∗
T

(A)) ≥ ri, then

TKT
(A) =

∨
{ri ∈ L | KRri

T
(A) = A∗} ≤ T(A).

Since T(A) ≥ T(A) and τ sT = τKRs∗
T

, then KRs∗
T

(A) = A where T(A) = s.

Thus

TKT
(A) =

∨
{ri ∈ L | KRri∗

T
(A) = A∗} ≥ T(A).

Hence TKT
= T.
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(3) (T1) By Lemma 2.4(12), since α∗ �Rr
T (z, x) ≤ α∗,

Tr
K(αX) =

∧
x(α

∗
X → KRr∗

T
(αX)(x))

=
∧
x(α

∗ →
∧
z∈X(α→ Rr∗

T (z, x)))
=
∧
x(α

∗ →
∧
z∈X(Rr

T (z, x)→ α∗))
=
∧
x

∧
z∈X(α∗ �Rr

T (z, x)→ α∗) = >.

(T2)Since KRr∗
T

(
∨
i∈ΓAi) =

∧
i∈ΓKRr∗

T
(Ai), by Lemma 2.4(8),

Tr
K(
∨
i∈ΓAi) = eLX ((

∨
i∈ΓAi)

∗,KRr∗
T

(
∨
i∈ΓAi))

= eLX (
∧
i∈ΓA

∗
i ,
∧
i∈ΓKRr∗

T
(Ai))

≥
∧
i∈Γ eLX (A∗i ,KRr∗

T
(Ai)) =

∧
i∈ΓT

r
K(Ai)

Since KRr∗
T

(
∧
i∈ΓAi) ≥

∨
i∈ΓKRr∗

T
(Ai), by Lemma 2.4(8), we have

Tr
K(
∧
i∈ΓAi) = eLX ((

∧
i∈ΓAi)

∗,KRr∗
T

(
∧
i∈ΓAi))

≥ eLX (
∨
i∈ΓA

∗
i ,
∨
i∈ΓKRr∗

T
(Ai))

≥
∧
i∈Γ eLX (A∗i ,KRr∗

T
(Ai)) =

∧
i∈ΓT

r
K(Ai)

(T3) Since

α→ KRr∗
T

(α� A) = KRr∗
T

(α→ (α� A)) ≥ KRr∗
T

(A)
iff KRr∗

T
(α� A) ≥ α�KRr∗

T
(A),

by Lemma 2.4(8),

Tr
K(α� A) = eLX ((α� A)∗,KRr∗

T
(α� A))

≥ eLX (α→ A∗, α→ KRr∗
T

(A))
≥ eLX (A∗,KRr∗

T
(A)) = Tr∗

K (A).(by Lemma 2.4(8))

(T4)

α→ KRr∗
T

(α→ A) = KRr∗
T

(α� (α→ A)) ≥ KRr∗
T

(A)
iff KRr∗

T
(α→ A) ≥ α�KRr∗

T
(A),

by Lemma 2.4(8),

Tr
K(α→ A) = eLX ((α→ A)∗,KRr∗

T
(α→ A))

= eLX (α� A∗, α�KRr∗
T

(A))
≥ eLX (A∗,KRr∗

T
(A)) = Tr

K(A).(by Lemma 2.4(10))

Hence Tr
K is an Alexandrov fuzzy topology. Since KRs∗

T
≤ KRr∗

T
for r ≤ s,

Ts
K(A) = eLX (A,KRs∗

T
(A)) ≤ eLX (A,KRr∗

T
(A)) = Tr

K(A).
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(5) Since Tr
K(A) = eLX (A∗,KRr∗

T
(A)) = > iff A∗ = KRr∗

T
(A), by (1),

TK(A) =
∨
{r ∈ L | Tr

K(A) = >}
=
∨
{r ∈ L | KRr∗

T
(A) = A∗}

= TKT
(A) = T(A).

(2), (4) and (6) are similarly proved.

Example 3.5. Let (L = [0, 1],�,→,∗ ) be a complete residuated lat-
tice with a strong negation.

(1) Let X = {x, y, z} be a set. Define a map T : [0, 1]X → [0, 1] as

T(A) = A(x)→ A(z).

Trivially, T(αX) = 1
Since α � A(x) → α � A(z) ≥ A(x) → A(z) from Lemma 2.4 (14),

T(α � A) ≥ T(A). Since (α → A(x)) → (α → A(z)) ≥ A(x) →
A(z) from Lemma 2.4 (10), T(α → A) ≥ T(A). By Lemma 2.4 (8),
T(
∨
i∈ΓAi) ≥

∧
i∈ΓT(Ai) and T(

∧
i∈ΓAi) ≥

∧
i∈ΓT(Ai). Hence T is an

Alexandrov fuzzy topology.
Since T(A) = A(x) → A(z) ≥ r, then A(z) ≥ A(x) � r. Put A(x) =

1, A(y) = 0. So, Rr
T (x, y) =

∧
{A(x) → A(y) | T(A) ≥ r} = 0 and

Rr
T (x, z) =

∧
{A(x)→ A(z) | T(A) ≥ r} = r Rr

T (x, x) = 1 Rr
T (x, y) = 0 Rr

T (x, z) = r
Rr
T (y, x) = 0 Rr

T (y, y) = 1 Rr
T (y, z) = 0

Rr
T (z, x) = 0 Rr

T (z, y) = 0 Rr
T (z, z) = 1


By Theorem 3.1(3), we obtain KRr∗

T
(A)(y) =

∧
x∈X(A(x) → Rr∗

T (x, y))
such that

KRr∗
T

(A) = (A(x)→ 0, A(y)→ 0, (A(x)→ r∗) ∧ (A(z)→ 0))
= (A∗(x), A∗(y), (A(x)→ r∗) ∧ A∗(z)))

If A∗(z) ≤ A(x) → r∗, then KRr∗
T

(A) = A∗, that is, A ∈ τKRr∗
T

. If

KRr∗
T

(A) = A∗, then (A(x) → r∗) ∧ A∗(z) = A∗(z), that is, A∗(z) ≤
A(x) → r∗. Hence A∗(z) ≤ A(x) → r∗ iff A∗(z) ≤ (A(x) � r)∗ iff
A(z) ≥ A(x)� r iff r ≤ (A(x)→ A(z)) = T(A) iff A ∈ τKRr∗

T
.

TKT
(A) =

∨
{r ∈ L | KRr∗

T
(A) = A∗}

=
∨
{r ∈ L | r ≤ A(x)→ A(z)}

= A(x)→ A(z) = T(A).

Moreover,

KRr∗
T

(A∗) = (A(x), A(y), (A∗(x)→ r∗) ∧ A(z))).
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From Theorem 3.4(1), we obtain

Tr
K(A) =

∧
x∈X(A∗(x)→ KRr∗

T
(A)(x))

= A∗(z)→ (r → A∗(x)) = r → (A∗(z)→ A∗(x)).

TK(A) =
∨
{r ∈ L | Tr

K(A) = 1}
=
∨
{r ∈ L | r → (A∗(z)→ A∗(x)) = 1}

= A(x)→ A(z) = T(A).

Hence TK = TKT
= T.

(2) By (1), we obtain a map T∗ : [0, 1]X → [0, 1] as

T∗(A) = A∗(x)→ A∗(z) = A(z)→ A(x).

Since T∗(A) = A(z) → A(x) ≥ r, then A(x) ≥ A(z) � r. Put A(z) =
1, A(y) = 0. So, Rr

T ∗(z, y) =
∧
{A(z) → A(y) | T∗(A) ≥ r} = 0 and

Rr
T ∗(z, x) =

∧
{A(z)→ A(x) | T(A) ≥ r} = r Rr
T ∗(x, x) = 1 Rr

T ∗(x, y) = 0 Rr
T ∗(x, z) = 0

Rr
T ∗(y, x) = 0 Rr

T ∗(y, y) = 1 Rr
T ∗(y, z) = 0

Rr
T ∗(z, x) = r Rr

T ∗(z, y) = 0 Rr
T ∗(z, z) = 1


Moreover, Rr

T ∗(x, y) = R−rT (x, y) = Rr
T (y, x) for all x, y ∈ X.

KRr∗
T∗ (A)(y) =

∧
x∈X

(A(x)→ Rr∗
T∗(x, y)).

KRr
T∗ (A) = (A∗(x) ∧ (A(z)→ r), A∗(y), A∗(z))

Then A∗(x) ≤ A(z) → r iff KRr∗
T∗ (A) = A∗. Moreover, since T∗(A) =

A(z)→ A(x) ≥ r iff A(z)�r ≤ A(x) iff A∗(x) ≤ A(z)→ r, then A ∈ τ rT ∗

iff A ∈ τKRr
T∗

. Thus τ rT ∗ = τKRr∗
T∗

. Moreover,

TKT∗ (A) =
∨
{r ∈ L | KRr∗

T∗ (A) = A∗}
= A(z)→ A(x) = T∗(A).

Moreover, we obtain

T∗rK (A) =
∧
x∈X(A∗(x)→ KRr∗

T∗ (A)(x))
= A∗(x)→ (A(z)→ r∗) = r → (A(z)→ A(x)).

TK∗(A) =
∨
{r ∈ L | T∗rK (A) = 1}

= A(z)→ A(x) = T∗(A).

Hence TK∗ = TKT∗ = T∗.

KRr∗
T∗ (1x)(z) =

∨
{B(z) | B ≤ 1∗x, T(B) ≥ r}
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Since B(x) = 0 and T(B) = 0→ B(z) = 1 ≥ r, then KRr∗
T∗ (1x)(z) = 1.

KRr∗
T∗ (1z)(x) =

∨
{B(x) | B ≤ 1∗z, T(B) ≥ r}

Since B(z) = 0 and T(B) = B(x)→ 0 ≥ r, then KRr∗
T∗ (1z)(x) = r∗. KRr∗

T∗ (1x)(x) = 0 KRr∗
T∗ (1x)(y) = 1 KRr∗

T∗ (1x)(z) = 1
KRr∗

T∗ (1y)(x) = 1 KRr∗
T∗ (1y)(y) = 0 KRr∗

T∗ (1y)(z) = 1
KRr∗

T∗ (1z)(x) = r∗ KRr∗
T∗ (1z)(y) = 1 KRr∗

T∗ (1z)(z) = 0


Then KRr∗

T∗ (1x)(y) = Rr∗
T ∗(x, y).

KRr∗
T

(1x)(z) =
∨
{B(z) | B ≤ 1∗x, T

∗(B) ≥ r}
Since B(x) = 0 and T∗(B) = B(z)→ 0 ≥ r, then KRr∗

T
(1x)(z) = r∗.

KRr∗
T

(1z)(x) =
∨
{B(x) | B ≤ 1∗z, T

∗(B) ≥ r}

Since B(z) = 0 and T∗(B) = 0→ B(x) = 1 ≥ r, then KRr∗
T

(1∗z)(x) = 1. KRr∗
T

(1x)(x) = 0 KRr∗
T

(1x)(y) = 1 KRr∗
T

(1x)(z) = r∗

KRr∗
T

(1y)(x) = 1 KRr∗
T

(1y)(y) = 0 KRr∗
T

(1y)(z) = 1
KRr∗

T
(1z)(x) = 1 KRr∗

T
(1z)(y) = 1 KRr∗

T
(1z)(z) = 0


Then KRr∗

T
(1x)(y) = Rr∗

T (x, y).
(3) Let (L = [0, 1],�,→,∗ ) be a complete residuated lattice with a

strong negation defined by, for each n ∈ N ,

x�y = ((xn+yn−1)∨0)
1
n , x→ y = (1−xn+yn)

1
n ∧1, x∗ = (1−xn)

1
n .

By (1) and (2), we obtain

T(A) = (1−A(x)n +A(z)n)
1
n ∧ 1, T∗(A) = (1−A(z)n +A(x)n)

1
n ∧ 1.

Rr∗
T =

 1 0 r
0 1 0
0 0 1

 Rr∗
T ∗ =

 1 0 0
0 1 0
r 0 1


KRr∗

T
(A) = (A∗(x), A∗(y), A∗(z) ∧ (1− rn + (A∗(x))n)

1
n )

KRr∗
T∗ (A) = (A∗(x) ∧ (1− rn + (A∗(z))n)

1
n , A∗(y), A∗(z)).

Since T(A) = (1− A(x)n + A(z)n)
1
n ∧ 1 ≥ r, we have

τ rT = τKRr∗
T

= {A ∈ LX | An(z)− An(x) ≥ 1− rn}
τ rT ∗ = τKRr∗

T∗
= {A ∈ LX | An(x)− An(z) ≥ 1− rn}.
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Tr
K(A) = r → (A(x)→ A(z)) = (2− rn − A(x)n + A(z)n)

1
n ∧ 1

T∗rK (A) = r → (A(z)→ A(x)) = (2− rn − A(z)n + A(x)n)
1
n ∧ 1.
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