Korean J. Math. **22** (2014), No. 3, pp. 553–565 http://dx.doi.org/10.11568/kjm.2014.22.3.553

JOIN-MEET APPROXIMATION OPERATORS INDUCED BY ALEXANDROV FUZZY TOPOLOGIES

Yong Chan Kim

ABSTRACT. In this paper, we investigate the properties of Alexandrov fuzzy topologies and join-meet approximation operators. We study fuzzy preorder, Alexandrov topologies join-meet approximation operators induced by Alexandrov fuzzy topologies. We give their examples.

1. Introduction

Pawlak [8,9] introduced rough set theory as a formal tool to deal with imprecision and uncertainty in data analysis. Hájek [2] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Radzikowska [10] developed fuzzy rough sets in complete residuated lattice. Bělohlávek [1] investigated information systems and decision rules in complete residuated lattices. Zhang [6,7] introduced Alexandrov *L*-topologies induced by fuzzy rough sets. Kim [5] investigated the properties of Alexandrov topologies in complete residuated lattices. Höhle [3] introduced *L*-fuzzy topologies and *L*-fuzzy interior approximation operators on complete residuated lattices.

In this paper, we investigate the properties of Alexandrov fuzzy topologies and join-meet approximation operators in a sense as Höhle [3]. We study fuzzy preorder, Alexandrov topologies join-meet approximation

Received March 23, 2014. Revised September 22, 2014. Accepted September 22, 2014.

²⁰¹⁰ Mathematics Subject Classification: 03E72, 03G10, 06A15, 54F05.

Key words and phrases: Complete residuated lattices, fuzzy preorder, join-meet approximation operators, Alexandrov (fuzzy) topologies.

[©] The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

operators induced by Alexandrov fuzzy topologies. We give their examples.

2. Preliminaries

DEFINITION 2.1. [1-3] A structure $(L, \lor, \land, \odot, \rightarrow, \bot, \top)$ is called a *complete residuated lattice* iff it satisfies the following properties:

(L1) $(L, \lor, \land, \bot, \top)$ is a complete lattice where \bot is the bottom element and \top is the top element;

(L2) (L, \odot, \top) is a monoid;

(L3) It has an adjointness, i.e.

$$x \le y \to z \text{ iff } x \odot y \le z.$$

An operator $*: L \to L$ defined by $a^* = a \to \bot$ is called *strong* negations if $a^{**} = a$.

$$\top_x(y) = \begin{cases} \ \top, & \text{if } y = x, \\ \ \bot, & \text{otherwise.} \end{cases} \ \top_x^*(y) = \begin{cases} \ \bot, & \text{if } y = x, \\ \ \top, & \text{otherwise.} \end{cases}$$

In this paper, we assume that $(L, \lor, \land, \odot, \rightarrow, *, \bot, \top)$ be a complete residuated lattice with a strong negation *.

DEFINITION 2.2. [6,7] Let X be a set. A function $e_X : X \times X \to L$ is called a fuzzy preorder if it satisfies the following conditions

(E1) reflexive if $e_X(x, x) = 1$ for all $x \in X$,

(E2) transitive if $e_X(x,y) \odot e_X(y,z) \le e_X(x,z)$, for all $x, y, z \in X'$

EXAMPLE 2.3. (1) We define a function $e_L : L \times L \to L$ as $e_L(x, y) = x \to y$. Then e_L is a fuzzy preorder on L.

(2) We define a function $e_{L^X} : L^X \times L^X \to L$ as $e_{L^X}(A, B) = \bigwedge_{x \in X} (A(x) \to B(x))$. Then e_{L^X} is a fuzzy preorder from Lemma 2.4 (9).

LEMMA 2.4. [1,2] Let $(L, \lor, \land, \odot, \rightarrow, *, \bot, \top)$ be a complete residuated lattice with a strong negation *. For each $x, y, z, x_i, y_i \in L$, the following properties hold.

(1) If $y \leq z$, then $x \odot y \leq x \odot z$. (2) If $y \leq z$, then $x \to y \leq x \to z$ and $z \to x \leq y \to x$. (3) $x \to y = \top$ iff $x \leq y$. (4) $x \to \top = \top$ and $\top \to x = x$. (5) $x \odot y \leq x \land y$.

 $\begin{array}{l} (6) \ x \odot (\bigvee_{i \in \Gamma} y_i) = \bigvee_{i \in \Gamma} (x \odot y_i) \ \text{and} \ (\bigvee_{i \in \Gamma} x_i) \odot y = \bigvee_{i \in \Gamma} (x_i \odot y). \\ (7) \ x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i) \ \text{and} \ (\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y). \\ (8) \ \bigvee_{i \in \Gamma} x_i \to \bigvee_{i \in \Gamma} y_i \geq \bigwedge_{i \in \Gamma} (x_i \to y_i) \ \text{and} \ \bigwedge_{i \in \Gamma} x_i \to \bigwedge_{i \in \Gamma} y_i \geq \\ \bigwedge_{i \in \Gamma} (x_i \to y_i). \\ (9) \ (x \to y) \odot x \leq y \ \text{and} \ (y \to z) \odot (x \to y) \leq (x \to z). \\ (10) \ x \to y \leq (y \to z) \to (x \to z) \ \text{and} \ x \to y \leq (z \to x) \to (z \to y). \\ (11) \ \bigwedge_{i \in \Gamma} x_i^* = (\bigvee_{i \in \Gamma} x_i)^* \ \text{and} \ \bigvee_{i \in \Gamma} x_i^* = (\bigwedge_{i \in \Gamma} x_i)^*. \\ (12) \ (x \odot y) \to z = x \to (y \to z) = y \to (x \to z) \ \text{and} \ (x \odot y)^* = x \to y^*. \\ (14) \ y \to z \leq x \odot y \to x \odot z. \end{array}$

DEFINITION 2.5. [5] A map $\mathcal{K} : L^X \to L^Y$ is called a *join-meet op*erator if it satisfies the following conditions, for all $A, A_i \in L^X$, and $\alpha \in L$,

(K1) $\mathcal{K}(\alpha \odot A) = \alpha \to \mathcal{K}(A)$ where $(\alpha \odot A)(x) = \alpha \odot A(x)$ for each $x \in X$,

(K2) $\mathcal{K}(\bigvee_{i \in I} A_i) = \bigwedge_{i \in I} \mathcal{K}(A_i),$ (K3) $\mathcal{K}(A) \leq A^*,$ (K4) $\mathcal{K}(\mathcal{K}^*(A)) \geq \mathcal{K}(A).$

DEFINITION 2.6. [4] An operator $\mathbf{T} : L^X \to L$ is called an *Alexandrov* fuzzy topology on X iff it satisfies the following conditions, for all $A, A_i \in L^X$, and $\alpha \in L$,

- (T1) $\mathbf{T}(\alpha_X) = \top$ where $\alpha_X(x) = \alpha$,
- (T2) $\mathbf{T}(\bigwedge_{i\in\Gamma} A_i) \ge \bigwedge_{i\in\Gamma} \mathbf{T}(A_i) \text{ and } \mathbf{T}(\bigvee_{i\in\Gamma} A_i) \ge \bigwedge_{i\in\Gamma} \mathbf{T}(A_i),$
- (T3) $\mathbf{T}(\alpha \odot A) \ge \mathbf{T}(A)$, where $(\alpha \odot A)(x) = \alpha \odot A(x)$ for each $x \in X$, (T4) $\mathbf{T}(\alpha \to A) > \mathbf{T}(A)$.

DEFINITION 2.7. [5] A subset $\tau \subset L^X$ is called an *Alexandrov topology* if it satisfies satisfies the following conditions.

(O1) $\alpha_X \in \tau$. (O2) If $A_i \in \tau$ for $i \in \Gamma$, $\bigvee_{i \in \Gamma} A_i, \bigwedge_{i \in \Gamma} A_i \in \tau$. (O3) $\alpha \odot A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.

(O4) $\alpha \to A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.

REMARK 2.8. (1) If $\mathbf{T} : L^X \to L$ is an Alexandrov fuzzy topology. Define $\mathbf{T}^*(A) = \mathbf{T}(A^*)$. Then \mathbf{T}^* is an Alexandrov fuzzy topology.

(2) If **T** is an Alexandrov fuzzy topology on X, $\tau_T^r = \{A \in L^X \mid \mathbf{T}(A) \geq r\}$ is an Alexandrov topology on X and $\tau_T^r \subset \tau_T^s$ for $s \leq r \in L$.

(3) If \mathbf{T}^* is an Alexandrov fuzzy topology on X, $(\tau_T^r)^* = \{A \in L^X \mid$ $\mathbf{T}^*(A) \geq r$ is an Alexandrov topology on X and $(\tau_T^r)^* = \tau_{T^*}^r$.

3. Join-meet approximation operators induced by Alexandrov fuzzy topologies

THEOREM 3.1. If \mathcal{K} is a join-meet approximation operator, then $\tau_{\mathcal{K}} =$ $\{A \in L^X \mid \mathcal{K}(A) = A^*\}$ is an Alexandrov topology on X.

Proof. (O1) Since $\mathcal{K}(\top_X) = \bot_X$ and $\mathcal{K}(\alpha \odot \top_X) = \alpha \to \mathcal{K}(\top_X) = \alpha_X^*$, then $\alpha_X^* = \mathcal{K}(\alpha_X)$. Thus $\alpha_X \in \tau_{\mathcal{K}}$.

(O2) For $A_i \in \tau_{\mathcal{K}}$ for each $i \in \Gamma$, by (K2), $\mathcal{K}(\bigvee_{i \in \Gamma} A_i) = \bigwedge_{i \in \Gamma} \mathcal{K}(A_i) = \bigwedge_{i \in \Gamma} A_i^*$. Then $\bigvee_{i \in \Gamma} A_i \in \tau_{\mathcal{K}}$. Since \mathcal{K} is decreasing function, $\bigvee_{i \in \Gamma} A_i^* = \bigwedge_{i \in \Gamma} A_i \in \tau_{\mathcal{K}}$. $\bigvee_{i\in\Gamma} \mathcal{K}(A_i) = \mathcal{K}(\bigwedge_{i\in\Gamma} A_i) \le (\bigwedge_{i\in\Gamma} A_i)^*, \text{ Thus, } \bigvee_{i\in\Gamma} A_i \in \tau_{\mathcal{K}}.$

(O3) For $A \in \tau_{\mathcal{K}}, \mathcal{K}(\alpha \odot A) = \alpha \to \mathcal{K}(A) = (\alpha \odot A)^*$. Then $\alpha \odot A \in \tau_{\mathcal{K}}$. (O4) For $A \in \tau_{\mathcal{K}}$, since $\alpha \odot (\alpha \to A) \leq A$, then $\alpha \to \mathcal{K}(\alpha \to A) =$ $\mathcal{K}(\alpha \odot (\alpha \to A)) \ge \mathcal{K}(A)$. So, $\alpha \odot \mathcal{K}(A) \le \mathcal{K}(\alpha \to A) \le (\alpha \to A)^* =$ $\alpha \odot A^*$. Thus $(\alpha \to A) \in \tau_{\mathcal{K}}$.

THEOREM 3.2. Let **T** be an Alexandrov fuzzy topology on X. Define

$$R_T^r(x,y) = \bigwedge \{A(x) \to A(y) \mid \mathbf{T}(A) \ge r\}.$$

Then the following properties hold.

(1) R_T^r is a fuzzy preorder with $R_T^r \leq R_T^s$ for each $r \leq s$. (2) Define $\mathcal{K}_{R_T^{r*}} : L^X \to L^X$ as follows

$$\mathcal{K}_{R_T^{r*}}(A)(y) = \bigwedge_{x \in X} (A(x) \to R_T^{r*}(x, y)).$$

Then $\mathcal{K}_{R_T^{**}}$ is a join-meet operator on X with $\mathcal{K}_{R_T^{**}} \leq \mathcal{K}_{R_T^{**}}$ for each $r \leq s$.

(3) $\tau_T^r = \tau_{\mathcal{K}_{R_T^{r*}}}.$

Proof. (1) Since $\mathbf{T}(B) \geq r$ iff $B \in \tau_T^r$, then $R_T^r(x, y) = \bigwedge_{B \in \tau_T^r} (B(x) \to C_T^r(B))$ B(y)). Since $R_T^r(x,x) = \bigwedge_{B \in \tau_T^r} (B(x) \to B(x)) = \top$ and

$$\begin{aligned} R_T^r(x,y) \odot R_T^r(y,z) &= \bigwedge_{B \in \tau_T^r} (B(x) \to B(y)) \odot \bigwedge_{B \in \tau_T^r} (B(y) \to B(z)) \\ &\leq \bigwedge_{B \in \tau_T^r} (B(x) \to B(y)) \odot (B(y) \to B(z)) \\ &\leq \bigwedge_{B \in \tau_T^r} (B(x) \to B(z)) = R_T^r(x,y). \end{aligned}$$

Hence R_T^r is a fuzzy preorder. For $r \leq s$, since $\mathbf{T}(B) \geq s \geq r$, we have $R_T^r \leq R_T^s$. (2) (K1)

$$\begin{aligned} \mathcal{K}_{R_T^{r*}}(\alpha \odot A)(y) &= \bigwedge_{x \in X} ((\alpha \odot A)(x) \to R_T^{r*}(x,y)) \\ &= \alpha \to \bigwedge_{x \in X} (A(x) \to R_T^{r*}(x,y)) = \alpha \to \mathcal{K}_{R_T^{r*}}(A)(y). \end{aligned}$$

$$\begin{split} \mathcal{K}_{R_T^{r*}}(\bigvee_{i\in\Gamma}A_i)(y) &= \bigwedge_{x\in X}(\bigvee_{i\in\Gamma}A_i(x) \to R_T^{r*}(x,y)) \\ &= \bigwedge_{i\in\Gamma}\bigwedge_{x\in X}(A_i(x) \to R_T^{r*}(x,y)) = \bigwedge_{i\in\Gamma}\mathcal{K}_{R_T^{r*}}(A_i)(y). \end{split}$$

$$(\mathrm{K3}) \ \mathcal{K}_{R_T^{r*}}(A)(y) &= \bigwedge_{x\in X}(A(x) \to R_T^{r*}(x,y)) \leq A(x) \to R_T^{r*}(x,x) = A(x) \to \bot = A^*(x).$$

$$(\mathrm{K4})$$

$$\begin{aligned} \mathcal{K}_{R_T^{r*}}(\mathcal{K}_{R_T^{r*}}^*(A))(z) &= \bigwedge_{y \in X} (\mathcal{K}_{R_T^{r*}}^*(A)(y) \to R_T^{r*}(y,z)) \\ &= \bigwedge_{y \in X} (\bigwedge_{x \in X} (A(x) \to R_T^{r*}(x,y))^* \to R_T^{r*}(y,z)) \\ &= \bigwedge_{y \in X} (\bigvee_{x \in X} (A(x) \odot R_T^r(x,y)) \to R_T^{r*}(y,z)) \\ &= \bigwedge_{x,y \in X} (A(x) \to (R_T^r(x,y)) \to R_T^{r*}(y,z))) \\ &= \bigwedge_{x \in X} (A(x) \to \bigwedge_{y \in X} (R_T^r(x,y)) \to R_T^{r*}(y,z))) \\ &= \bigwedge_{x \in X} (A(x) \to (\bigvee_{y \in X} (R_T^r(x,y)) \odot R_T^r(y,z))^*) \\ &\geq \bigwedge_{x \in X} (A(x) \to R_T^{r*}(x,z)) \\ &= \mathcal{K}_{R_T^r}(A)(z). \end{aligned}$$

Hence $\mathcal{K}_{R_T^{r*}}$ is a join-meet operator on X. For $r \leq s$, since $R_T^r \leq R_T^s$, then $\mathcal{K}_{R_T^{s*}} \leq \mathcal{K}_{R_T^{t*}}$.

(3) Let
$$A \in \tau_T^r$$
. Since $R_T^r(x, y) = \bigwedge_{B \in \tau_T^r} (B(x) \to B(y))$,
 $A^*(y) \odot R_T^r(x, y) = A^*(y) \odot \bigwedge_{B \in \tau_T^r} (B(x) \to B(y))$
 $\leq A^*(y) \odot (A^*(y) \to A^*(x)) \leq A^*(x).$

Thus $A^*(y) \leq R^r_T(x,y) \to A^*(x) = A(x) \to R^{r*}_T(x,y)$. Then $A^* \leq \mathcal{K}_{R^{r*}_T}(A)$. By (K3), $\mathcal{K}_{R^{r*}_T}(A) = A^*$; i.e. $A \in \tau_{\mathcal{K}_{R^{r*}_T}}$. So, $\tau^r_T \subset \tau_{\mathcal{K}_{R^{r*}_T}}$. Let $A \in \tau_{\mathcal{K}_{R^{r*}_T}}$; i.e. $\mathcal{K}_{R^{r*}_T}(A) = A^*$. Then

$$A^* = \bigwedge_{x \in X} (A(x) \to R_T^{r*}(x, -)) = \bigwedge_{x \in X} (A(x) \to (\bigwedge_{B \in \tau_T^r} (B(x) \to B))^*) = \bigwedge_{x \in X} (A(x) \to \bigvee_{B \in \tau_T^r} (B(x) \odot B^*))$$

Since $\bigvee_{B \in \tau_T^r} (B(x) \odot B^*) \in (\tau_T^r)^*$ and $A(x) \to \bigvee_{B \in \tau_T^r} (B(x) \odot B^*) \in (\tau_T^r)^*$, we have $A^* \in (\tau_T^r)^*$; i.e. $A \in \tau_T^r$. So, $\tau_{\mathcal{K}_{R_T^{r*}}} \subset \tau_T^r$.

THEOREM 3.3. Let \mathbf{T} be an Alexandrov fuzzy topology on X. Define

$$R_T^{-r}(x,y) = \bigwedge \{ B(y) \to B(x) \mid \mathbf{T}(B) \ge r \}.$$

Then the following properties hold.

(1) R_T^{-r} is a fuzzy preorder with $R_T^{-r} \leq R_T^{-s}$ for each $r \leq s$ and

 $R_T^{-r}(x,y) = R_{T^*}^r(x,y).$

(2) $\mathcal{K}_{R_{\tau}^{-r*}}$ is a join-meet operator on X such that

$$\mathcal{K}_{R_T^{-r*}}(A)(y) = \bigwedge_{x \in X} (A(x) \to R_T^{-r*}(x, y)) = \bigwedge_{x \in X} (A(x) \to R_T^{r*}(x, y)).$$

(3) $(\tau_T^r)^* = \tau_{\mathcal{K}_{R_T^{-r*}}} = \tau_{\mathcal{K}_{R_T^{r*}}}.$

(4) If $\mathcal{K}_{R_T^{r_i*}}(A) = B$ for all $i \in \Gamma \neq \emptyset$, then $\mathcal{K}_{R_T^{s*}}(A) = B$ with $s = \bigvee_{i \in \Gamma} r_i$.

(5) If $\mathcal{K}_{R_T^{-r_i}}(A) = B$ for all $i \in \Gamma \neq \emptyset$, then $\mathcal{K}_{R_T^{-s}}(A) = B$ with $s = \bigvee_{i \in \Gamma} r_i$.

(6) $\mathcal{K}_{R_{T^*}^{r*}}(A) = \bigvee \{A_i \mid A_i \leq A^*, \ \mathbf{T}(A_i) \geq r\}$ for all $A \in L^X$ and $r \in L$. Moreover, $R_T^{-r}(x, y) = \mathcal{K}_{R_{T^*}^{r*}}^*(\top_x)(y)$, for each $x, y \in X$.

(7) $\mathcal{K}_{R_T^{r*}}(A) = \bigvee \{A_i \mid A_i \leq A^*, \mathbf{T}^*(A_i) \geq r\}$ for all $A \in L^X$ and $r \in L$. Moreover, $R_T^r(x, y) = \mathcal{K}_{R_T^{r*}}^*(\top_x)(y)$, for each $x, y \in X$.

Proof. (1) By a similar method as (1), R_T^{-r} is a fuzzy preorder. Moreover,

$$\begin{aligned} R_T^{-r}(x,y) &= \bigwedge \{B(y) \to B(x) \mid \mathbf{T}(B) \ge r\} \\ &= \bigwedge \{B^*(x) \to B^*(y) \mid \mathbf{T}(B^*) = \mathbf{T}^*(B) \ge r\} \\ &= R_{T^*}^r(x,y). \end{aligned}$$

(2) By (1), $R_T^{-r}(x, y) = \bigwedge_{B \in \tau_T^r} (B(y) \to B(x))$ is a fuzzy preorder. (3) Let $A \in (\tau_T^r)^*$. Then $A^* \in \tau_T^r$ and

$$\begin{array}{ll} A^*(y) \odot R_T^{-r}(x,y) &= A^*(y) \odot \bigwedge_{B \in \tau_T^r} (B(y) \to B(x)) \\ &\leq A^*(y) \odot (A^*(y) \to A^*(x)) \le A^*(x) \end{array}$$

Thus $A^*(y) \leq R_T^{-r}(x,y) \to A^*(x) = A(x) \to R_T^{-r*}(x,y)$. Hence $\mathcal{K}_{R_T^{-r*}}(A) = A^*$; i.e. $A \in \tau_{\mathcal{K}_{R_T^{-r*}}}$. So, $(\tau_T^r)^* \subset \tau_{\mathcal{K}_{R_T^{-r*}}}$.

Let
$$A \in \tau_{\mathcal{K}_{R_T^{-r*}}}$$
; i.e. $\mathcal{K}_{R_T^{-r*}}(A) = A^*$. Then

$$\begin{aligned} A^* &= \bigwedge_{x \in X} (A(x) \to R_T^{-r*}(x, -)) \\ &= \bigwedge_{x \in X} (A(x) \to (\bigwedge_{B \in \tau_{T^*}^r} (B(x) \to B))^*) \\ &= \bigwedge_{x \in X} (A(x) \to \bigvee_{B \in \tau_{T^*}^r} (B(x) \odot B^*)) \end{aligned}$$

Since $\bigvee_{B \in \tau_T^r} (B(x) \odot B^*) \in \tau_T^r$ and $A(x) \to \bigvee_{B \in \tau_T^r} (B(x) \odot B^*) \in \tau_T^r$, we have $A^* \in \tau_T^r$; i.e. $A \in (\tau_T^r)^*$. So, $\tau_{\mathcal{K}_{R_T^{-r*}}} \subset (\tau_T^r)^*$.

(4) Let $\mathcal{K}_{R_{T}^{r_{i}*}}(A) = B$ for all $i \in \Gamma \neq \emptyset$. Since

$$\mathcal{K}_{R_T^{r_i^*}}(A) = \bigwedge_{x \in X} (A(x) \to (R_T^{r_i}(x, -))^*) \in (\tau_T^{r_i})^*$$

 $\mathbf{T}^{*}(B) = \mathbf{T}^{*}(\mathcal{K}_{R_{T}^{r_{i}*}}(A)) \geq r_{i}, \text{ then } \mathbf{T}^{*}(B) \geq \bigvee_{i \in \Gamma} r_{i} = s; \text{i.e. } B \in (\tau_{T}^{s})^{*} = \tau_{\mathcal{K}_{R_{T}^{s}*}}; \text{i.e. } B^{*} \in \tau_{T}^{s*} = \tau_{\mathcal{K}_{R_{T}^{s}}}. \text{ Since } \mathcal{K}_{R_{T}^{s}}(B^{*}) = B = \mathcal{K}_{R_{T}^{r_{i}*}}(A) \leq A^{*}, A \leq \mathcal{K}_{R_{T}^{s}}^{*}(B^{*}) = B^{*}. \text{ Thus}$

$$\mathcal{K}_{R_T^{s*}}(A) \ge \mathcal{K}_{R_T^{s*}}(\mathcal{K}_{R_T^{s*}}^*(B^*)) = \mathcal{K}_{R_T^{s*}}(B^*) = B.$$

Since $s \ge r_i$, $\mathcal{K}_{R_T^{s*}}(A) \le \mathcal{K}_{R_T^{r_i*}}(A) = B$. Thus $\mathcal{K}_{R_T^{s*}}(A) = B$.

(6) For each $A \in L^X$ with $A_i \leq A^*$, $\mathbf{T}(A_i) \geq r$, since $A_i \in \tau_T^r = \tau_{\mathcal{K}_{R_T^{r*}}}$ from Theorem 3.2(3), then

$$\mathcal{K}_{R_T^{**}}(\bigvee_i A_i) = \bigwedge_i \mathcal{K}_{R_T^{**}}(A_i) = \bigwedge_i A_i^*.$$

Since $\bigvee_i A_i \in \tau_{\mathcal{K}_{R_T^{r*}}} = \tau_T^r$ iff $(\bigvee_i A_i)^* \in \tau_{\mathcal{K}_{R_T^{r*}}} = \tau_{T^*}^r$, then

$$\mathcal{K}_{R_{T^*}^{r*}}((\bigvee_i A_i)^*) = \mathcal{K}_{R_{T^*}^{r*}}(\bigwedge_i A_i^*) = \bigvee_i A_i.$$

Since $\bigwedge_i A_i^* \ge A$. Thus

$$\mathcal{K}_{R_{T^*}^r}(A) \ge \mathcal{K}_{R_{T^*}^{r*}}(\bigwedge_i A_i^*) = \bigvee_i A_i = \bigvee \{A_i \mid A_i \le A^*, \ \mathbf{T}(A_i) \ge r\}.$$

Since $\mathcal{K}_{R_{T^*}^{r*}}(\mathcal{K}_{R_{T^*}^{r*}}^*(A)) = \mathcal{K}_{R_{T^*}^{r*}}(A) \leq A^*$. Since

$$\mathcal{K}_{R_{T^*}^{r*}}(A) = \bigwedge_{x \in X} (A(x) \to (R_{T^*}^r(x, -))^*) \in \tau_T^r$$

So, $\bigvee \{A_i \mid A_i \leq A^*, \ \mathbf{T}(A_i) \geq r\} \geq \mathcal{K}_{R_{T^*}^{r*}}(A)$. Hence $\bigvee \{A_i \mid A_i \leq A, \ \mathbf{T}(A_i) \geq r\} = \mathcal{K}_{R_{T^*}^{r*}}(A)$ for all $A \in L^X$ and $r \in L$. Moreover, $\mathcal{K}_{R_{T^*}^{r*}}(\top_x)(y) = \bigwedge_{z \in X} (\top_x(z) \to R_{T^*}^{r*}(z,y)) = R_{T^*}^{r*}(x,y) = R_T^{-r*}(x,y).$

(5) and (6) are similarly proved as (4) and (7), respectively. \Box

THEOREM 3.4. Let \mathbf{T} be an Alexandrov fuzzy topology on X. Then the following properties hold.

(1) Define $\mathbf{T}_{K_T}: L^X \to L$ as

$$\mathbf{T}_{K_T}(A) = \bigvee \{ r_i \in L \mid \mathcal{K}_{R_T^{r_i*}}(A) = A^* \}.$$

Then \mathbf{T}_{K_T} is an Alexandrov fuzzy topology on X such that $\mathbf{T}_{K_T} = \mathbf{T}$. (2) Define $\mathbf{T}_{K_{T^*}} : L^X \to L$ as

$$\mathbf{T}_{K_{T^*}}(A) = \bigvee \{ r_i \in L \mid \mathcal{K}_{R_T^{-r_i^*}}(A) = A^* \} = \bigvee \{ r_i \in L \mid \mathcal{K}_{R_T^{r_i^*}}(A) = A^* \}.$$

Then $\mathbf{T}_{K_{T^*}}$ is an Alexandrov fuzzy topology on X such that $\mathbf{T}_{K_{T^*}} = \mathbf{T}^*$. (3) There exists an Alexandrov fuzzy topology \mathbf{T}_K^r such that

$$\mathbf{T}_{K}^{r}(A) = e_{L^{X}}(A^{*}, \mathcal{K}_{R_{T}^{r*}}(A)).$$

If $r \leq s$, then $\mathbf{T}_K^s \leq \mathbf{T}_K^r$ for all $A \in L^X$.

(4) There exists an Alexandrov fuzzy topology \mathbf{T}_{K}^{*r} such that

$$\mathbf{T}_{K}^{*r}(A) = e_{L^{X}}(A^{*}, \mathcal{K}_{R_{T}^{-r}}(A)).$$

If $r \leq s$, then $\mathbf{T}_{K}^{*r} \leq \mathbf{T}_{K}^{*s}$ for all $A \in L^{X}$. (5) Define $\mathbf{T}_{K} : L^{X} \to L$ as

$$\mathbf{T}_{K}(A) = \bigvee \{ r^{*} \in L \mid \mathbf{T}_{K}^{r}(A) = \top \}.$$

Then $\mathbf{T}_K = \mathbf{T} = \mathbf{T}_{K_T}$ is an Alexandrov fuzzy topology on X. (6) Define $\mathbf{T}_{K^*} : L^X \to L$ as

$$\mathbf{T}_{K^*}(A) = \bigvee \{ r^* \in L \mid \mathbf{T}_K^{*r}(A) = \top \}.$$

Then $\mathbf{T}_{K^*} = \mathbf{T}^* = \mathbf{T}_{K_{T^*}}$ is an Alexandrov fuzzy topology on X.

Proof. (1) We will show that $\mathbf{T}_{K_T} = \mathbf{T}$. Let $\mathcal{K}_{R_T^{r_i^*}}(A) = A^*$. Since $\mathcal{K}_{R_T^{r_i^*}}(A) \in (\tau_T^{r_i})^*$ and $\mathbf{T}(A) = \mathbf{T}^*(A^*) = \mathbf{T}^*(\mathcal{K}_{R_T^{r_i^*}}(A)) \ge r_i$, then

$$\mathbf{T}_{K_T}(A) = \bigvee \{ r_i \in L \mid \mathcal{K}_{R_T^{r_i}}(A) = A^* \} \leq \mathbf{T}(A).$$

Since $\mathbf{T}(A) \geq \mathbf{T}(A)$ and $\tau_T^s = \tau_{\mathcal{K}_{R_T^{s*}}}$, then $\mathcal{K}_{R_T^{s*}}(A) = A$ where $\mathbf{T}(A) = s$. Thus

$$\mathbf{T}_{K_T}(A) = \bigvee \{ r_i \in L \mid \mathcal{K}_{R_T^{r_i*}}(A) = A^* \} \ge \mathbf{T}(A)$$

Hence $\mathbf{T}_{K_T} = \mathbf{T}$.

(3) (T1) By Lemma 2.4(12), since $\alpha^* \odot R^r_T(z, x) \le \alpha^*$,

$$\begin{aligned} \mathbf{T}_{K}^{r}(\alpha_{X}) &= \bigwedge_{x} (\alpha_{X}^{*} \to \mathcal{K}_{R_{T}^{r*}}(\alpha_{X})(x)) \\ &= \bigwedge_{x} (\alpha^{*} \to \bigwedge_{z \in X} (\alpha \to R_{T}^{r*}(z,x))) \\ &= \bigwedge_{x} (\alpha^{*} \to \bigwedge_{z \in X} (R_{T}^{r}(z,x) \to \alpha^{*})) \\ &= \bigwedge_{x} \bigwedge_{z \in X} (\alpha^{*} \odot R_{T}^{r}(z,x) \to \alpha^{*}) = \top \end{aligned}$$

(T2)Since $\mathcal{K}_{R_T^{r*}}(\bigvee_{i\in\Gamma} A_i) = \bigwedge_{i\in\Gamma} \mathcal{K}_{R_T^{r*}}(A_i)$, by Lemma 2.4(8),

$$\begin{aligned} \mathbf{T}_{K}^{r}(\bigvee_{i\in\Gamma}A_{i}) &= e_{L^{X}}((\bigvee_{i\in\Gamma}A_{i})^{*}, \mathcal{K}_{R_{T}^{r*}}(\bigvee_{i\in\Gamma}A_{i})) \\ &= e_{L^{X}}(\bigwedge_{i\in\Gamma}A_{i}^{*}, \bigwedge_{i\in\Gamma}\mathcal{K}_{R_{T}^{r*}}(A_{i})) \\ &\geq \bigwedge_{i\in\Gamma}e_{L^{X}}(A_{i}^{*}, \mathcal{K}_{R_{T}^{r*}}(A_{i})) = \bigwedge_{i\in\Gamma}\mathbf{T}_{K}^{r}(A_{i}) \end{aligned}$$

Since $\mathcal{K}_{R_T^{r*}}(\bigwedge_{i\in\Gamma} A_i) \ge \bigvee_{i\in\Gamma} \mathcal{K}_{R_T^{r*}}(A_i)$, by Lemma 2.4(8), we have

$$\begin{aligned} \mathbf{T}_{K}^{r}(\bigwedge_{i\in\Gamma}A_{i}) &= e_{L^{X}}((\bigwedge_{i\in\Gamma}A_{i})^{*}, \mathcal{K}_{R_{T}^{r*}}(\bigwedge_{i\in\Gamma}A_{i})) \\ &\geq e_{L^{X}}(\bigvee_{i\in\Gamma}A_{i}^{*}, \bigvee_{i\in\Gamma}\mathcal{K}_{R_{T}^{r*}}(A_{i})) \\ &\geq \bigwedge_{i\in\Gamma}e_{L^{X}}(A_{i}^{*}, \mathcal{K}_{R_{T}^{r*}}(A_{i})) = \bigwedge_{i\in\Gamma}\mathbf{T}_{K}^{r}(A_{i}) \end{aligned}$$

(T3) Since

$$\alpha \to \mathcal{K}_{R_T^{r*}}(\alpha \odot A) = \mathcal{K}_{R_T^{r*}}(\alpha \to (\alpha \odot A)) \ge \mathcal{K}_{R_T^{r*}}(A)$$

iff $\mathcal{K}_{R_T^{r*}}(\alpha \odot A) \ge \alpha \odot \mathcal{K}_{R_T^{r*}}(A),$

by Lemma 2.4(8),

$$\mathbf{T}_{K}^{r}(\alpha \odot A) = e_{L^{X}}((\alpha \odot A)^{*}, \mathcal{K}_{R_{T}^{r*}}(\alpha \odot A))$$

$$\geq e_{L^{X}}(\alpha \to A^{*}, \alpha \to \mathcal{K}_{R_{T}^{r*}}(A))$$

$$\geq e_{L^{X}}(A^{*}, \mathcal{K}_{R_{T}^{r*}}(A)) = \mathbf{T}_{K}^{r*}(A). \text{(by Lemma 2.4(8))}$$

(T4)

$$\alpha \to \mathcal{K}_{R_T^{r*}}(\alpha \to A) = \mathcal{K}_{R_T^{r*}}(\alpha \odot (\alpha \to A)) \ge \mathcal{K}_{R_T^{r*}}(A)$$

iff $\mathcal{K}_{R_T^{r*}}(\alpha \to A) \ge \alpha \odot \mathcal{K}_{R_T^{r*}}(A),$

by Lemma 2.4(8),

$$\begin{aligned} \mathbf{T}_{K}^{r}(\alpha \to A) &= e_{L^{X}}((\alpha \to A)^{*}, \mathcal{K}_{R_{T}^{r*}}(\alpha \to A)) \\ &= e_{L^{X}}(\alpha \odot A^{*}, \alpha \odot \mathcal{K}_{R_{T}^{r*}}(A)) \\ &\geq e_{L^{X}}(A^{*}, \mathcal{K}_{R_{T}^{r*}}(A)) = \mathbf{T}_{K}^{r}(A). \text{(by Lemma 2.4(10))} \end{aligned}$$

Hence \mathbf{T}_{K}^{r} is an Alexandrov fuzzy topology. Since $\mathcal{K}_{R_{T}^{s*}} \leq \mathcal{K}_{R_{T}^{r*}}$ for $r \leq s$, $\mathbf{T}_{K}^{s}(A) = e_{L^{X}}(A, \mathcal{K}_{R_{T}^{s*}}(A)) \leq e_{L^{X}}(A, \mathcal{K}_{R_{T}^{r*}}(A)) = \mathbf{T}_{K}^{r}(A).$

(5) Since
$$\mathbf{T}_{K}^{r}(A) = e_{L^{X}}(A^{*}, \mathcal{K}_{R_{T}^{r*}}(A)) = \top$$
 iff $A^{*} = \mathcal{K}_{R_{T}^{r*}}(A)$, by (1),
 $\mathbf{T}_{K}(A) = \bigvee \{ r \in L \mid \mathbf{T}_{K}^{r}(A) = \top \}$
 $= \bigvee \{ r \in L \mid \mathcal{K}_{R_{T}^{r*}}(A) = A^{*} \}$
 $= \mathbf{T}_{K_{T}}(A) = \mathbf{T}(A).$

(2), (4) and (6) are similarly proved.

EXAMPLE 3.5. Let $(L = [0, 1], \odot, \rightarrow, *)$ be a complete residuated lattice with a strong negation.

(1) Let $X = \{x, y, z\}$ be a set. Define a map $\mathbf{T} : [0, 1]^X \to [0, 1]$ as $\mathbf{T}(A) = A(x) \to A(z).$

Trivially, $\mathbf{T}(\alpha_X) = 1$

Since $\alpha \odot A(x) \to \alpha \odot A(z) \ge A(x) \to A(z)$ from Lemma 2.4 (14), $\mathbf{T}(\alpha \odot A) \ge \mathbf{T}(A)$. Since $(\alpha \to A(x)) \to (\alpha \to A(z)) \ge A(x) \to A(z)$ from Lemma 2.4 (10), $\mathbf{T}(\alpha \to A) \ge \mathbf{T}(A)$. By Lemma 2.4 (8), $\mathbf{T}(\bigvee_{i\in\Gamma} A_i) \ge \bigwedge_{i\in\Gamma} \mathbf{T}(A_i)$ and $\mathbf{T}(\bigwedge_{i\in\Gamma} A_i) \ge \bigwedge_{i\in\Gamma} \mathbf{T}(A_i)$. Hence **T** is an Alexandrov fuzzy topology.

Since $\mathbf{T}(A) = A(x) \to A(z) \ge r$, then $A(z) \ge A(x) \odot r$. Put A(x) = 1, A(y) = 0. So, $R_T^r(x, y) = \bigwedge \{A(x) \to A(y) \mid \mathbf{T}(A) \ge r\} = 0$ and $R_T^r(x, z) = \bigwedge \{A(x) \to A(z) \mid \mathbf{T}(A) \ge r\} = r$

$$\begin{pmatrix} R_T^r(x,x) = 1 & R_T^r(x,y) = 0 & R_T^r(x,z) = r \\ R_T^r(y,x) = 0 & R_T^r(y,y) = 1 & R_T^r(y,z) = 0 \\ R_T^r(z,x) = 0 & R_T^r(z,y) = 0 & R_T^r(z,z) = 1 \end{pmatrix}$$

By Theorem 3.1(3), we obtain $\mathcal{K}_{R_T^{**}}(A)(y) = \bigwedge_{x \in X} (A(x) \to R_T^{**}(x, y))$ such that

$$\mathcal{K}_{R_T^{r*}}(A) = (A(x) \to 0, A(y) \to 0, (A(x) \to r^*) \land (A(z) \to 0)) = (A^*(x), A^*(y), (A(x) \to r^*) \land A^*(z)))$$

If $A^*(z) \leq A(x) \rightarrow r^*$, then $\mathcal{K}_{R_T^{r*}}(A) = A^*$, that is, $A \in \tau_{\mathcal{K}_{R_T^{r*}}}$. If $\mathcal{K}_{R_T^{r*}}(A) = A^*$, then $(A(x) \rightarrow r^*) \wedge A^*(z) = A^*(z)$, that is, $A^*(z) \leq A(x) \rightarrow r^*$. Hence $A^*(z) \leq A(x) \rightarrow r^*$ iff $A^*(z) \leq (A(x) \odot r)^*$ iff $A(z) \geq A(x) \odot r$ iff $r \leq (A(x) \rightarrow A(z)) = \mathbf{T}(A)$ iff $A \in \tau_{\mathcal{K}_{R_T^{r*}}}$.

$$\mathbf{T}_{K_T}(A) = \bigvee \{ r \in L \mid \mathcal{K}_{R_T^{r*}}(A) = A^* \} \\ = \bigvee \{ r \in L \mid r \leq A(x) \to A(z) \} \\ = A(x) \to A(z) = \mathbf{T}(A).$$

Moreover,

$$\mathcal{K}_{R_T^{r*}}(A^*) = (A(x), A(y), (A^*(x) \to r^*) \land A(z))).$$

From Theorem 3.4(1), we obtain

$$\begin{aligned} \mathbf{T}_{K}^{r}(A) &= \bigwedge_{x \in X} (A^{*}(x) \to \mathcal{K}_{R_{T}^{r*}}(A)(x)) \\ &= A^{*}(z) \to (r \to A^{*}(x)) = r \to (A^{*}(z) \to A^{*}(x)). \\ \mathbf{T}_{K}(A) &= \bigvee \{ r \in L \mid \mathbf{T}_{K}^{r}(A) = 1 \} \\ &= \bigvee \{ r \in L \mid r \to (A^{*}(z) \to A^{*}(x)) = 1 \} \\ &= A(x) \to A(z) = \mathbf{T}(A). \end{aligned}$$

Hence $\mathbf{T}_K = \mathbf{T}_{K_T} = \mathbf{T}$.

(2) By (1), we obtain a map $\mathbf{T}^* : [0, 1]^X \to [0, 1]$ as

$$\mathbf{T}^*(A) = A^*(x) \to A^*(z) = A(z) \to A(x)$$

Since $\mathbf{T}^*(A) = A(z) \to A(x) \ge r$, then $A(x) \ge A(z) \odot r$. Put A(z) = 1, A(y) = 0. So, $R_{T^*}^r(z, y) = \bigwedge \{A(z) \to A(y) \mid \mathbf{T}^*(A) \ge r\} = 0$ and $R_{T^*}^r(z, x) = \bigwedge \{A(z) \to A(x) \mid \mathbf{T}(A) \ge r\} = r$

$$\begin{pmatrix} R_{T^*}^r(x,x) = 1 & R_{T^*}^r(x,y) = 0 & R_{T^*}^r(x,z) = 0 \\ R_{T^*}^r(y,x) = 0 & R_{T^*}^r(y,y) = 1 & R_{T^*}^r(y,z) = 0 \\ R_{T^*}^r(z,x) = r & R_{T^*}^r(z,y) = 0 & R_{T^*}^r(z,z) = 1 \end{pmatrix}$$

Moreover, $R_{T^*}^r(x, y) = R_T^{-r}(x, y) = R_T^r(y, x)$ for all $x, y \in X$.

$$\mathcal{K}_{R_{T^*}^{r*}}(A)(y) = \bigwedge_{x \in X} (A(x) \to R_{T^*}^{r*}(x, y)).$$

$$\mathcal{L}_{R_{T^*}}(A) = (A^*(x) \land (A(z) \to r), A^*(y), A^*(z))$$

 $\begin{aligned} \mathcal{K}_{R^r_{T^*}}(A) &= (A^*(x) \land (A(z) \to r), A^*(y), A^*(z)) \\ \text{Then } A^*(x) &\leq A(z) \to r \text{ iff } \mathcal{K}_{R^{r*}_{T^*}}(A) = A^*. \text{ Moreover, since } \mathbf{T}^*(A) = \\ A(z) \to A(x) \geq r \text{ iff } A(z) \odot r \leq A(x) \text{ iff } A^*(x) \leq A(z) \to r, \text{ then } A \in \tau^r_{T^*} \\ \text{iff } A \in \tau_{\mathcal{K}_{R^r_{T^*}}}. \text{ Thus } \tau^r_{T^*} = \tau_{\mathcal{K}_{R^r_{T^*}}}. \text{ Moreover, } \end{aligned}$

$$\mathbf{T}_{K_{T^*}}(A) = \bigvee \{ r \in L \mid \mathcal{K}_{R_{T^*}^{r*}}(A) = A^* \} \\ = A(z) \to A(x) = \mathbf{T}^*(A).$$

Moreover, we obtain

$$\mathbf{T}_{K}^{*r}(A) = \bigwedge_{x \in X} (A^{*}(x) \to \mathcal{K}_{R_{T^{*}}^{r*}}(A)(x))$$

= $A^{*}(x) \to (A(z) \to r^{*}) = r \to (A(z) \to A(x)).$
$$\mathbf{T}_{K^{*}}(A) = \bigvee \{r \in L \mid \mathbf{T}_{K}^{*r}(A) = 1\}$$

= $A(z) \to A(x) = \mathbf{T}^{*}(A).$

Hence $\mathbf{T}_{K^*} = \mathbf{T}_{K_{T^*}} = \mathbf{T}^*$.

$$\mathcal{K}_{R_{T^*}^{r*}}(1_x)(z) = \bigvee \{ B(z) \mid B \le 1_x^*, \ \mathbf{T}(B) \ge r \}$$

Since B(x) = 0 and $\mathbf{T}(B) = 0 \to B(z) = 1 \ge r$, then $\mathcal{K}_{R_{T^*}^{r*}}(1_x)(z) = 1$. $\mathcal{K}_{R_{T^*}^{r*}}(1_z)(x) = \bigvee \{B(x) \mid B \le 1_z^*, \ \mathbf{T}(B) \ge r\}$ Since B(z) = 0 and $\mathbf{T}(B) = B(x) \to 0 \ge r$, then $\mathcal{K}_{R_{T^*}^{r*}}(1_z)(x) = r^*$. $\begin{pmatrix} \mathcal{K}_{R_{T^*}^{r*}}(1_x)(x) = 0 & \mathcal{K}_{R_{T^*}^{r*}}(1_x)(y) = 1 & \mathcal{K}_{R_{T^*}^{r*}}(1_x)(z) = 1 \\ \mathcal{K}_{R_{T^*}^{r*}}(1_y)(x) = 1 & \mathcal{K}_{R_{T^*}^{r*}}(1_y)(y) = 0 & \mathcal{K}_{R_{T^*}^{r*}}(1_y)(z) = 1 \\ \mathcal{K}_{R_{T^*}^{r*}}(1_z)(x) = r^* & \mathcal{K}_{R_{T^*}^{r*}}(1_z)(y) = 1 & \mathcal{K}_{R_{T^*}^{r*}}(1_z)(z) = 0 \end{pmatrix}$ Then $\mathcal{K}_{R_{T^*}^{r*}}(1_x)(y) = R_{T^*}^{r*}(x, y)$. $\mathcal{K}_{R_{T^*}^{r*}}(1_x)(z) = \bigvee \{B(z) \mid B \le 1_x^*, \ \mathbf{T}^*(B) \ge r\}$ Since B(x) = 0 and $\mathbf{T}^*(B) = B(z) \to 0 \ge r$, then $\mathcal{K}_{R_{T^*}^{r*}}(1_x)(z) = r^*$.

$$\mathcal{K}_{R_T^{r*}}(1_z)(x) = \bigvee \{ B(x) \mid B \le 1_z^*, \ \mathbf{T}^*(B) \ge r \}$$

Since B(z) = 0 and $\mathbf{T}^*(B) = 0 \to B(x) = 1 \ge r$, then $\mathcal{K}_{R_T^{r*}}(1_z^*)(x) = 1$.

$$\begin{pmatrix} \mathcal{K}_{R_T^{r*}}(1_x)(x) = 0 & \mathcal{K}_{R_T^{r*}}(1_x)(y) = 1 & \mathcal{K}_{R_T^{r*}}(1_x)(z) = r^* \\ \mathcal{K}_{R_T^{r*}}(1_y)(x) = 1 & \mathcal{K}_{R_T^{r*}}(1_y)(y) = 0 & \mathcal{K}_{R_T^{r*}}(1_y)(z) = 1 \\ \mathcal{K}_{R_T^{r*}}(1_z)(x) = 1 & \mathcal{K}_{R_T^{r*}}(1_z)(y) = 1 & \mathcal{K}_{R_T^{r*}}(1_z)(z) = 0 \end{pmatrix}$$

Then $\mathcal{K}_{R_T^{r*}}(1_x)(y) = R_T^{r*}(x, y).$

(3) Let $(L = [0, 1], \odot, \rightarrow, *)$ be a complete residuated lattice with a strong negation defined by, for each $n \in N$,

$$\begin{split} x\odot y &= ((x^n+y^n-1)\vee 0)^{\frac{1}{n}}, \ x\to y = (1-x^n+y^n)^{\frac{1}{n}}\wedge 1, \ x^* = (1-x^n)^{\frac{1}{n}}.\\ \text{By (1) and (2), we obtain} \end{split}$$

$$\begin{split} \mathbf{T}(A) &= (1 - A(x)^n + A(z)^n)^{\frac{1}{n}} \wedge 1, \quad \mathbf{T}^*(A) = (1 - A(z)^n + A(x)^n)^{\frac{1}{n}} \wedge 1\\ R_T^{r*} &= \begin{pmatrix} 1 & 0 & r \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad R_T^{r*} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ r & 0 & 1 \end{pmatrix}\\ \mathcal{K}_{R_T^{r*}}(A) &= (A^*(x), A^*(y), A^*(z) \wedge (1 - r^n + (A^*(x))^n)^{\frac{1}{n}})\\ \mathcal{K}_{R_T^{r*}}(A) &= (A^*(x) \wedge (1 - r^n + (A^*(z))^n)^{\frac{1}{n}}, A^*(y), A^*(z)).\\ \text{Since } \mathbf{T}(A) &= (1 - A(x)^n + A(z)^n)^{\frac{1}{n}} \wedge 1 \geq r, \text{ we have}\\ \tau_T^r &= \tau_{\mathcal{K}_{R_T^{r*}}} &= \{A \in L^X \mid A^n(z) - A^n(x) \geq 1 - r^n\}\\ \tau_{T^*}^r &= \tau_{\mathcal{K}_{R_T^{r*}}} &= \{A \in L^X \mid A^n(x) - A^n(z) \geq 1 - r^n\}. \end{split}$$

$$\begin{aligned} \mathbf{T}_{K}^{r}(A) &= r \to (A(x) \to A(z)) = (2 - r^{n} - A(x)^{n} + A(z)^{n})^{\frac{1}{n}} \wedge 1 \\ \mathbf{T}_{K}^{*r}(A) &= r \to (A(z) \to A(x)) = (2 - r^{n} - A(z)^{n} + A(x)^{n})^{\frac{1}{n}} \wedge 1. \end{aligned}$$

References

- R. Bělohlávek, *Fuzzy Relational Systems*, Kluwer Academic Publishers, New York, 2002.
- [2] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
- [3] U. Höhle and S.E. Rodabaugh, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series 3, Kluwer Academic Publishers, Boston.
- [4] Fang Jinming, *I-fuzzy Alexandrov topologies and specialization orders*, Fuzzy Sets and Systems, **158** (2007), 2359–2374.
- [5] Y.C. Kim, Alexandrov L-topologies and L-join meet approximation operators, International Journal of Pure and Applied Mathematics, 91 (1) (2014), 113– 129.
- [6] H. Lai and D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems 157 (2006),1865–1885.
- H. Lai and D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, Int. J. Approx. Reasoning 50 (2009), 695–707.
- [8] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci. 11 (1982), 341–356.
- [9] Z. Pawlak, Rough probability, Bull. Pol. Acad. Sci. Math. 32 (1984), 607–615.
- [10] A. M. Radzikowska and E.E. Kerre, A comparative study of fuzy rough sets, Fuzzy Sets and Systems 126 (2002), 137–155.
- [11] Y.H. She and G.J. Wang An axiomatic approach of fuzzy rough sets based on residuated lattices, Computers and Mathematics with Applications 58 (2009), 189–201.
- [12] Zhen Ming Ma and Bao Qing Hu, Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets, Information Sciences 218 (2013), 194–204.

Yong Chan Kim Department of Mathematics Gangneung-Wonju National Gangneung 210-702, Korea *E-mail*: yck@gwnu.ac.kr