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1. Introduction

Pawlak [1, 2] introduced rough set theory as a formal tool to deal with imprecision and
uncertainty in data analysis. Hájek [3] introduced a complete residuated lattice which is
an algebraic structure for many valued logic. Radzikowska and Kerre [4] developed fuzzy
rough sets in complete residuated lattice. Bělohlávek [5] investigated information systems and
decision rules in complete residuated lattices. Lai and Zhang [6, 7] introduced Alexandrov
L-topologies induced by fuzzy rough sets. Kim [8, 9] investigate relations between lower
approximation operators as a generalization of fuzzy rough set and Alexandrov L-topologies.
Algebraic structures of fuzzy rough sets are developed in many directions [4, 8, 10]

In this paper, we investigate the properties of L-lower approximation operators as a gener-
alization of fuzzy rough set in complete residuated lattices. We study relations lower (upper,
join meet, meet join) approximation operators and Alexandrov L-topologies. Moreover, we
give their examples as approximation operators induced by various L-fuzzy relations.

Definition 1.1. [3, 5] An algebra (L,∧,∨,�,→,⊥,>) is called a complete residuated lattice
if it satisfies the following conditions:

(C1) L = (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and the least
element ⊥;

(C2) (L,�,>) is a commutative monoid;

(C3) x� y ≤ z iff x ≤ y → z for x, y, z ∈ L

Remark 1.2. [3, 5] (1) A completely distributive lattice L = (L,≤,∨,∧ = �,→, 1, 0) is a
complete residuated lattice defined by

x→ y =
∨
{z | x ∧ z ≤ y}.
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(2) The unit interval with a left-continuous t-norm �,

([0, 1],∨,∧,�,→, 0, 1),

is a complete residuated lattice defined by

x→ y =
∨
{z | x� z ≤ y}.

In this paper, we assume (L,∧,∨,�,→,∗⊥,>) is a com-
plete residuated lattice with the law of double negation;i.e.
x∗∗ = x. For α ∈ L,A,>x ∈ LX ,

(α→ A)(x) = α→ A(x), (α�A)(x) = α�A(x)

and
>x(x) = >,>x(y) = ⊥, otherwise.

Lemma 1.3. [3, 5] For each x, y, z, xi, yi ∈ L, we have the
following properties.

(1) If y ≤ z, (x � y) ≤ (x � z), x → y ≤ x → z and
z → x ≤ y → x.

(2) x� y ≤ x ∧ y ≤ x ∨ y.
(3) x→ (

∧
i∈Γ yi) =

∧
i∈Γ(x→ yi) and (

∨
i∈Γ xi)→ y =∧

i∈Γ(xi → y).

(4) x→ (
∨

i∈Γ yi) ≥
∨

i∈Γ(x→ yi)

(5) (
∧

i∈Γ xi)→ y ≥
∨

i∈Γ(xi → y).

(6) (x� y)→ z = x→ (y → z) = y → (x→ z).

(7) x � (x → y) ≤ y, x → y ≤ (y → z) → (x → z) and
x→ y ≤ (z → x)→ (z → y).

(8) y ≤ x→ (x� y) and x ≤ (x→ y)→ y.

(9) x→ y ≤ (x� z)→ (y � z).
(10) (x→ y)� (y → z) ≤ x→ z.

(11) x→ y = > iff x ≤ y.

(12) x→ y = y∗ → x∗.

(13) (x� y)∗ = x→ y∗ = y → x∗ and x→ y = (x� y∗)∗.
(14)

∧
i∈Γ x

∗
i = (

∨
i∈Γ xi)

∗ and
∨

i∈Γ x
∗
i = (

∧
i∈Γ xi)

∗.

Definition 1.4. [8, 9]

(1) A mapH : LX → LX is called an L-upper approxima-
tion operator iff it satisfies the following conditions

(H1) A ≤ H(A),
(H2) H(α � A) = α � H(A) where α(x) = α for all

x ∈ X ,
(H3) H(

∨
i∈I Ai) =

∨
i∈I H(Ai).

(2) A map J : LX → LX is called an L-lower approxima-
tion operator iff it satisfies the following conditions

(J1) J (A) ≤ A,
(J2) J (α→ A) = α→ J (A),
(J3) J (

∧
i∈I Ai) =

∧
i∈I J (Ai).

(3) A map K : LX → LX is called an L-join meet approxi-
mation operator iff it satisfies the following conditions

(K1) K(A) ≤ A∗,
(K2) K(α�A) = α→ K(A),
(K3) K(

∨
i∈I Ai) =

∧
i∈I K(Ai).

(4) A mapM : LX → LX is called an L-meet join approxi-
mation operator iff it satisfies the following conditions

(M1) A∗ ≤M(A),
(M2) M(α→ A) = α�M(A),
(M3) M(

∧
i∈I Ai) =

∨
i∈IM(Ai).

Definition 1.5. [6, 9] A subset τ ⊂ LX is called an Alexandrov
L-topology if it satisfies:

(T1) ⊥X ,>X ∈ τ where >X(x) = > and ⊥X(x) = ⊥ for
x ∈ X .

(T2) If Ai ∈ τ for i ∈ Γ,
∨

i∈ΓAi,
∧

i∈ΓAi ∈ τ .

(T3) α�A ∈ τ for all α ∈ L and A ∈ τ .

(T4) α→ A ∈ τ for all α ∈ L and A ∈ τ .

Theorem 1.6. [8, 9]

(1) τ is an Alexandrov topology on X iff τ∗ = {A∗ ∈ LX |
A ∈ τ} is an Alexandrov topology on X .

(2) If H is an L-upper approximation operator, then τH =

{A ∈ LX | H(A) = A} is an Alexandrov topology on
X .

(3) If J is an L-lower approximation operator, then τJ =

{A ∈ LX | J (A) = A} is an Alexandrov topology on
X .

(4) IfK is an L-join meet approximation operator, then τK =

{A ∈ LX | K(A) = A∗} is an Alexandrov topology on
X .

(5) IfM is an L-meet join operator, then τM = {A ∈ LX |
M(A) = A∗} is an Alexandrov topology on X .

Definition 1.7. [8, 9] LetX be a set. A functionR : X×X →
L is called:

(R1) reflexive if R(x, x) = > for all x ∈ X ,

(R2) symmetric if R(x, x) = > for all x ∈ X ,

(R3) transitive ifR(x, y)�R(y, z) ≤ R(x, z), for all x, y, z ∈
X .
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(R4) Euclidean ifR(x, z)�R(y, z) ≤ R(x, y), for all x, y, z ∈
X .

If R satisfies (R1) and (R3), R is called a L-fuzzy preorder.

If R satisfies (R1), (R2) and (R3), R is called a L-fuzzy
equivalence relation

2. The Properties of L-lower Approximation Op-
erators

Theorem 2.1. Let J : LX → LX be an L-lower approxima-
tion operator. Then the following properties hold.

(1) For A ∈ LX , J (A)(y) =
∧

x∈X(J ∗(>∗x)(y)→ A(x)).

(2) Define HJ(B) =
∧
{A | B ≤ J (A)}. Then HJ :

LX → LX with

HJ(B)(x) =
∨
y∈X

(J ∗(>∗x)(y)�B(y))

is an L-upper approximation operator such that (HJ ,J )

is a residuated connection;i.e.,

HJ(B) ≤ A iff B ≤ J (A).

Moreover, τJ = τHJ
.

(3) If J (J (A)) = J (A) for A ∈ LX , thenHJ(HJ(A)) =

HJ(A) for A ∈ LX such that τJ = τHJ
with

τJ = {J (A) =
∧
x∈X

(J ∗(>∗x)(y)→ A(x)) | A ∈ LX},

τHJ
= {HJ(A)(x)

=
∨
y∈X

(J ∗(>∗x)(y)�A(y)) | A ∈ LX}.

(4) If J (J ∗(A)) = J ∗(A) for A ∈ LX , then J (J (A)) =

J (A) such that

{J ∗(A) =
∨

x∈X(A∗(x)� J ∗(>∗x)) | A ∈ LX}
= τJ = (τJ )∗.

(5) DefineHs(A) = J (A∗)∗. ThenHs : LX → LX with

Hs(B)(x) =
∨
y∈X

(J ∗(>∗y)(x)�B(y))

is an L-upper approximation operator. Moreover, τHs
=

(τJ )∗ = (τHJ
)∗.

(6) If J (J (A)) = J (A) for A ∈ LX , then

Hs(Hs(A)) = Hs(A)

for A ∈ LX such that τHs = (τJ )∗ = (τHJ
)∗. with

τHs
= {Hs(A) =

∨
y∈X

(J ∗(>∗y)�A(y)) | A ∈ LX}.

(7) If J (J ∗(A)) = J ∗(A) for A ∈ LX , then

Hs(H∗s(A)) = H∗s(A)

such that

{H∗s(A) =
∧

y∈X(A(y)→ J (>∗y)) | A ∈ LX}
= τHs

= (τHs
)∗.

(8) Define KJ(A) = J (A∗). Then KJ : LX → LX with

KJ(A) =
∧
y∈X

(A(y)→ J (>∗y))

is an L-join meet approximation operator.

(9) If J (J (A)) = J (A) for A ∈ LX , then

KJ(K∗J(A)) = K∗J(A)

for A ∈ LX such that τKJ
= (τJ )∗ with

τKJ
= {K∗J(A) =

∨
y∈X

(J ∗(>∗y)�A(y)) | A ∈ LX}.

(10) If J (J ∗(A)) = J ∗(A) for A ∈ LX , then

KJ(KJ(A)) = K∗J(A)

such that

{KJ(A) =
∧

y∈X(A(y)→ J (>∗y)) | A ∈ LX}
= τKJ

= (τKJ
)∗.

(11) Define MJ(A) = (J (A))∗. Then MJ : LX → LX

with

MJ(A)(y) =
∨
x∈X

(A∗(x)� J ∗(>∗x)(y))

is an L-meet join approximation operator. Moreover,
τMJ

= τJ .

(12) IfJ (J (A)) = J (A) forA ∈ LX , thenMJ(M∗J(A)) =
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MJ(A) for A ∈ LX such that τMJ
= (τJ )∗ with

{M∗J(A)(y) =
∧
x∈X

(J ∗(>∗x)(y)→ A(x)) | A ∈ LX}

= τMJ
= (τJ )∗.

(13) If J (J ∗(A)) = J ∗(A) for A ∈ LX , then

MJ(MJ(A)) =M∗J(A)

such that

τMJ
= (τMJ

)∗

=

{
MJ(A)(y) =

∨
x∈X

(A∗(x)� J ∗(>∗x)(y)) |

A ∈ LX
}
.

(14) Define KHJ
(A) = (HJ(A))∗. Then KHJ

: LX → LX

with

KHJ
(A)(y) =

∧
x∈X

(A(x)→ J (>∗y)(x))

is an L-meet join approximation operator. Moreover,
τKHJ

= τJ .

(15) If J (J (A)) = J (A) for A ∈ LX , then

KHJ
(K∗HJ

(A)) = KHJ

for A ∈ LX such that τKHJ
= (τJ )∗ with

τKHJ
= {K∗HJ

(y)

=
∨
x∈X

(J ∗(>∗y)(x)�A∗(x)) | A ∈ LX}.

(16) IfHJ(H∗J(A)) = H∗J(A) for A ∈ LX , then

KHJ
(KHJ

) = K∗HJ
(A)

such that

τKHJ
= (τKHJ

)∗

= {KHJ
(A)(y)

=
∧
x∈X

(A(x)→ J (>∗y)(x)) | A ∈ LX}.

(17) DefineMHJ
(A) = HJ(A∗). ThenMHJ

: LX → LX

with

MHJ
(A)(y) =

∨
x∈X

(A∗(x)� J ∗(>∗y)(x))

is an L-join meet approximation operator. Moreover,
τMHJ

= (τJ )∗.

(18) If J (J (A)) = J (A) for A ∈ LX , then

MHJ
(M∗HJ

(A)) =MHJ
(A)

for A ∈ LX such that τMHJ
= (τJ )∗ with

τMHJ
= {M∗HJ

(A)(y)

=
∧
x∈X

(J ∗(>∗y)(x)→ A(x)) | A ∈ LX}.

(19) IfHJ(H∗J(A)) = H∗J(A) for A ∈ LX , then

MHJ
(MHJ

(A)) =M∗HJ
(A)

such that

τMHJ
= (τMHJ

)∗

==
∨
x∈X

(A∗(x)� J ∗(>∗y)(x)) | A ∈ LX}.

(20) (KHJ
,KJ) is a Galois connection;i.e,

A ≤ KHJ
(B) iff B ≤ KJ(A).

Moreover, τKJ
= (τKHJ

)∗.

(21) (MJ ,MHJ
) is a dual Galois connection;i.e,

MHJ
(A) ≤ B iff MJ(B) ≤ A.

Moreover, τMJ
= (τMHJ

)∗.

Proof.

(1) Since A =
∧

x∈X(A∗(x)→ >∗x), by (J2) and (J3),

J (A)(y) =
∧
x∈X

(A∗(x)→ J (>∗x)(y))

=
∧
x∈X

(J ∗(>∗x)(y)→ A(x)).

(2) SinceB(y) ≤ J (A)(y) =
∧

x∈X(J ∗(>∗x)(y)→ A(x))

iff
∨

y∈X(J ∗(>∗x)(y)�B(y)) ≤ A(x), we have

HJ(B)(x) =
∨
y∈Y

(J ∗(>∗x)(y)�B(y)).
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(H1) Since HJ(A) ≤ HJ(A) iff A ≤ J (HJ(A)), we
have A ≤ J (HJ(A)) ≤ HJ(A).

(H2) a�A ≤ J (HJ(a�A))

iff A ≤ a→ J (HJ(a�A))

= J (a→ J (HJ(a�A)))

iff HJ(A) ≤ a→ HJ(a�A)

iff a�HJ(A) ≤ HJ(a�A).

A ≤ J (HJ(A))

≤ J (a→ a�HJ(A)) = a→ J (a�HJ(A))

iff a�A ≤ J (a�HJ(A))

iff HJ(a�A) ≤ a�HJ(A).

(H3) By the definition of HJ , since HJ(A) ≤ HJ(B)

for B ≤ A, we have∨
i∈Γ

HJ(Ai) ≤ HJ(
∨
i∈Γ

Ai).

SinceJ (
∨

i∈ΓHJ(Ai)) ≥ J (HJ(Ai)) ≥ Ai, then
J (

∨
i∈ΓHJ(Ai)) ≥

∨
i∈ΓAi. Thus∨

i∈Γ

HJ(Ai) ≥ HJ(
∨
i∈Γ

Ai).

Thus HJ : LX → LX is an L-upper approximation
operator. By the definition ofHJ , we have

HJ(B) ≤ A iff B ≤ J (A).

Since A ≤ J (A) iffHJ(A) ≤ A, we have τHJ
= τJ .

(3) Let J (J (A)) = J (A) for A ∈ LX . Since J (B) ≥
HJ(A) iff J (J (B)) = J (B) ≥ A from the definition
ofHJ , we have

HJ(HJ(A)) =
∧
{B | J (B) ≥ HJ(A)}

=
∧
{B | J (J (B)) = J (B) ≥ A}

= HJ(A).

(4) Let J ∗(A) ∈ τJ . Since J (J ∗(A)) = J ∗(A),

J (J (A)) = J (J ∗(J ∗(A))) = (J (J ∗(A)))∗ = J (A).

Hence J (A) ∈ τJ ; i.e. J ∗(A) ∈ (τJ )∗. Thus, τJ ⊂
(τJ )∗.

Let A ∈ (τJ )∗. Then A∗ = J (A∗). Since J (A) =

J (J ∗(A∗)) = J ∗(A∗) = A, then A ∈ τJ . Thus,
(τJ )∗ ⊂ τJ .

(5) (H1) Since J (A∗) ≤ A∗,Hs(A) = J (A∗)∗ ≥ A.
(H2) Hs(α�A) = (J ((α�A)∗)∗

= (J (α→ A∗))∗

= (α→ J (A∗))∗

= α� J (A∗)∗

= α�Hs(A).
(H3) Hs(

∨
i∈Γ

Ai) = (J (
∨
i∈Γ

Ai)
∗)∗

= (J (
∧
i∈Γ

A∗i ))∗

= (
∧
i∈Γ

J (A∗i ))∗

=
∨
i∈Γ

(J (A∗i ))∗

=
∨
i∈Γ

Hs(Ai).

Hence Hs is an L-upper approximation operator such
that

Hs(B)(x) = (J (B∗)(x))∗ =
∨
y∈X

(J ∗(>∗y)(x)�B(y)).

Moreover, τHs = (τJ )∗ from:

A = Hs(A) iff A = J (A∗)∗ iff A∗ = J (A∗).

(6) Let J (J (A)) = J (A) for A ∈ LX . Then

Hs(Hs(A)) = J ∗(H∗s(A)) = (J (J (A∗)))∗

= J ∗(A∗) = Hs(A).

Hence τHs = {Hs(A) =
∨

y∈X(J ∗(>∗y)�A(y)) | A ∈
LX}.

(7) Let J (J ∗(A)) = J ∗(A) for A ∈ LX . Then

Hs(H∗s(A)) = J ∗(Hs(A)) = (J (J ∗(A∗)))∗

= (J ∗(A∗))∗ = H∗s(A).

Hence τHs = {H∗s(A) =
∧

y∈X(A(y) → J (>∗y)) |
A ∈ LX}.

Hs(Hs(A)) = Hs(H∗s(H∗s(A)))

= H∗s(H∗s(A)) = Hs(A).

By a similar method in (4), τHs = (τHs)∗.

(8) It is similarly proved as (5).

(9) If J (J (A)) = J (A) for A ∈ LX , then KJ(K∗J(A)) =
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KJ(A)

KJ(K∗J(A)) = KJ(J ∗(A∗)) = J (J (A∗))

= J (A∗) = KJ(A).

(10) IfJ (J ∗(A)) = J ∗(A) forA ∈ LX , thenKJ(KJ(A)) =

K∗J(A)

KJ(KJ(A)) = J (K∗J(A)) = J (J ∗(A∗))
= J ∗(A∗) = K∗J(A).

Since KJ(KJ(A)) = K∗J(A),

KJ(K∗J(A)) = KJ(KJ(KJ(A)))

= K∗J(KJ(A)) = KJ(A).

Hence τKJ
= {KJ(A) | A ∈ LX} = (τKJ

)∗.

(11) , (12), (13) and (14) are similarly proved as (5), (9), (10)
and (5), respectively.

(15) If J (J (A)) = J (A) for A ∈ LX , thenHJ(HJ(A)) =

HJ(A). Thus, KHJ
(K∗HJ

(A)) = KHJ
(A)

KHJ
(K∗HJ

(A)) = KHJ
(HJ(A))

= (HJ(HJ(A)))∗ = (HJ(A))∗ = KHJ
(A).

Since J (A) = A iff HJ(A) = A iff KHJ
(A) = A∗,

τKHJ
= (τJ )∗ with

τKHJ
= {K∗HJ

(A)(y)

=
∨
x∈X

(J ∗(>∗y)(x)�A(x)) | A ∈ LX}.

(16) IfHJ(H∗J(A)) = H∗J(A) for A ∈ LX , then

KHJ
(KHJ

(A)) = K∗HJ
(A)

KHJ
(KHJ

(A)) = KHJ
(K∗J(A)) = H∗J(H∗J(A))

= HJ(A) = K∗HJ
(A).

(17) , (18) and (19) are similarly proved as (14), (15) and (16),
respectively.

(20) (KHJ
,KJ) is a Galois connection;i.e,

A ≤ KHJ
(B) iff A ≤ (HJ(B))∗

iff HJ(B) ≤ A∗ iff B ≤ J (A∗) = KJ(A)

Moreover, since A∗ ≤ KJ(A) iff A ≤ KHJ
(A∗), τKJ

=

(τKHJ
)∗.

(21) (MJ ,MHJ
) is a dual Galois connection;i.e,

MHJ
(A) ≤ B iff HJ(A∗) ≤ B

iff A∗ ≤ J (B) iff MJ(B) = (J (B))∗ ≤ A.

Since MHJ
(A∗) ≤ A iff MJ(A) ≤ A∗, τMJ

=

(τMHJ
)∗.

Let R ∈ LX×X be an L-fuzzy relation. Define operators as
follows

HR(A)(y) =
∨

x∈X(A(x)�R(x, y)),

JR(A)(y) =
∧

x∈X(R(x, y)→ A(x)),

KR(A)(y) =
∧

x∈X(A(x)→ R(x, y))

MR(A)(y) =
∨

x∈X(A∗(x)�R(x, y)).

Example 2.2. Let R be a reflexive L-fuzzy relation. Define
JR : LX → LX as follows:

JR(A)(y) =
∧
x∈X

(R(x, y)→ A(x)).

(1) (J1) JR(A)(y) ≤ R(y, y)→ A(y) = A(y). JR satisfies
the conditions (J1) and (J2) from:

JR(a→ A)(y) =
∧

x∈X(R(x, y)→ (a→ A)(x))

= a→
∧

x∈X(R(x, y)→ A(x)),

JR(
∧

i∈ΓAi)(y) =
∧

x∈X(R(x, y)→
∧

i∈ΓAi(x))

=
∧

i∈Γ

∧
x∈X(R(x, y)→ Ai(x)).

Hence JR is an L-lower approximation operator.

(2) DefineHJR
(B) =

∨
{A | B ≤ JR(A)}. Since

B(y) ≤ JR(A)(y) iff B(y) ≤
∧
x∈X

(R(x, y)→ A(x))

iff
∨
y∈X

(B(y)�R(x, y)) ≤ A(x),

then

HJR
(B)(x) =

∨
y∈X

(R(x, y)�B(y)) = HR−1(B)(x).

By Theorem 2.1(2),HJR
= HR−1 is an L-upper approx-

imation operator such that (HJR
,JR) is a residuated

connection;i.e.,

HJR
(A) ≤ B iff A ≤ JR(B).

Moreover, τHJR
= τJR

.
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(3) If R is an L-fuzzy preorder, then R−1 is an L-fuzzy
preorder. Since

JR(JR(A))(z) =
∧
y∈X

(R(y, z)→ JR(A)(y))

=
∧
y∈X

(R(y, z)→
∧
x∈X

(R(x, y)→ A(x)))

=
∧
x∈X

∧
y∈X

(R(y, z)�R(x, y)→ A(x)))

=
∧
x∈X

(
∨
y∈X

(R(y, z)�R(x, y))→ A(x))

=
∧
x∈X

(R(x, z)→ A(x))

= JR(A)(z),

By Theorem 2.1(3),HJR
(HJR

(A)) = HJR
(A). By The-

orem 2.1(3), τHJR
= τJR

with

{HR−1(A) =
∨
x∈X

(R(−, x)�A(x)) | A ∈ LX}

= τHJR
= τHR−1 ,

τJR
= {JR(A) =

∧
x∈X

(R(x,−)→ A(x)) | A ∈ LX}.

(4) Let R be a reflexive and Euclidean L-fuzzy relation.
Since R(x, z) � R(y, z) � A∗(x) ≤ R(x, y) � A∗(x)

iff R(x, z)�A∗(x) ≤ R(y, z)→ R(x, y) ≤ A∗(x),

JR(J ∗R(A))(z)

=
∧
y∈X

(R(y, z)→ J ∗R(A)(y))

=
∧
y∈X

(R(y, z)→
∨
x∈X

R(x, y)�A∗(x)))

≥
∨
x∈X

R(x, z)�A∗(x))).

Thus, JR(J ∗R(A)) = J ∗R(A).

By Theorem 2.1(4), JR(JR(A)) = JR(A) for A ∈ LX .
Thus, τJR

= (τJR
)∗ with

τJR
=

{
J ∗R(A) =

∨
x∈X

(R(x,−) �A∗(x)) =MR(A)

| A ∈ LX

}
.

(5) Define Hs(A) = JR(A∗)∗. By Theorem 2.1(5), Hs =

HR is an L-upper approximation operator such that

Hs(A)(y) = (
∧
x∈X

R(x, y)→ A∗(x))∗

=
∨
x∈X

(R(x, y)�A(x)).

Moreover, τHs
= τHR

= (τHJR
)∗.

(6) If R is an L-fuzzy preorder, then JR(JR(A)) = JR(A)

for A ∈ LX . By Theorem 2.1(6), then Hs(Hs(A)) =

Hs(A) for A ∈ LX such that τHs = (τJR
)∗ = (τHJR

)∗

with

τHs
= {Hs(A) =

∨
y∈X

(R(y,−)�A(y)) | A ∈ LX}.

(7) If R is a reflexive and Euclidean L-fuzzy relation, then
JR(J ∗R(A)) = J ∗R(A) for A ∈ LX . By Theorem 2.1(7),
Hs(H∗s(A)) = H∗s(A) such that

τHs
= (τHs

)∗

= {H∗s(A)

=
∧
y∈X

(A(y)→ R∗(y,−))

= KR∗(A) | A ∈ LX}.

(8) Define KJR
(A) = JR(A∗). Then KJR

: LX → LX

with

KJR
(A)(y) =

∧
x∈X

(R(x, y)→ A∗(x)) = KR∗(y)

is an L-join meet approximation operator. Moreover,
τKJR

= (τJR
)∗.

(9) R is anL-fuzzy preorder, thenJR(JR(A)) = JR(A) for
A ∈ LX . By Theorem 2.1(9),KJR

(K∗JR
(A)) = KJR

(A)

for A ∈ LX such that τKJR
= (τJR

)∗ with

τKJR
= {K∗JR

(A)

=
∨
x∈X

(R(x,−)�A(x))

= HR(A) | A ∈ LX}.

(10) If R is a reflexive and Euclidean L-fuzzy relation, then
JR(J ∗R(A)) = J ∗R(A) for A ∈ LX . By Theorem
2.1(10), KJR

(KJR
(A)) = K∗JR

(A) such that

{KJR
(A) =

∧
x∈X(A(x)→ R∗(x,−) | A ∈ LX}

= τKJR
= (τKJR

)∗.

(11) DefineMJR
(A) = (JR(A))∗. ThenMJR

: LX → LX
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with

MJR
(A)(y) =

∨
x∈X

(A∗(x)�R(x, y)) =MR(A)(y)

is an L-join meet approximation operator. Moreover,
τMJR

= τJR
.

(12) If R is an L-fuzzy preorder, then JR(JR(A)) = JR(A)

for A ∈ LX . By Theorem 2.1(12),MJR
(M∗JR

(A)) =

MJR
(A) for A ∈ LX such that τMJR

= τJR
with

τMJR
= {M∗JR

(A) =
∧

x∈X(R(x,−)→ A(x))

= JR(A) | A ∈ LX}.

(13) If R is a reflexive and Euclidean L-fuzzy relation, then
JR(J ∗R(A)) = J ∗R(A) for A ∈ LX . By Theorem
2.1(13),MJR

(MJR
(A)) =M∗JR

(A) such that

τMJR
= {MJR

(A) =
∨

x∈X(A(x)�R(x,−))

= HJR
(A) | A ∈ LX} = (τMJR

)∗.

(14) Define KHJR
(A) = (HJR

(A))∗. Then

KHJR
: LX → LX

with

KHJR
(A)(y) =

∧
x∈X

(A(x)→ R∗(y, x))

= KR−1∗(A)(y)

is an L-join meet approximation operator. Moreover,
τKR−1 = τJR

= τHR−1 .

(15) If R is an L-fuzzy preorder, then JR(JR(A)) = JR(A)

for A ∈ LX . By Theorem 2.1(15), KR−1(K∗R−1(A)) =

KR−1(A) for A ∈ LX such that τKR−1 = τJR
= τHR−1

with

τKR−1∗ = {K∗R−1∗(A)(y) =
∨

x∈X(R(y, x)�A(x))

= HR−1(A)(y) | A ∈ LX}.

(16) Let R−1 be a reflexive and Euclidean L-fuzzy relation.
Since

R−1(x, z)�R−1(y, z) ≤ R−1(x, y)

iff R−1(y, z) ≤ R−1(x, z)→ R−1(x, y)

iff R−1∗(y, z) ≥ R−1(x, z)�R−1∗(x, y),

we have

(A(x)→ R−1∗(x, y))�A(x)�R−1(x, z)

≤ R−1(x, y)�R−1∗(x, z) ≤ R−1∗(y, z).

Thus,

A(x)�R−1(x, z) ≤ (A(x)→ R−1∗(x, y))

→ R−1(x, y)�R−1∗(x, z) ≤ R−1∗(y, z).

Hence

KR−1∗(KR−1∗(A))(z)

=
∧
y∈X

(KR−1∗(A)(y)→ R−1∗(y, z))

=
∧
y∈X

(
∧
x∈X

(A(x)→ R−1∗(x, y))→ R−1∗(y, z))

≤
∨
x∈X

(A(x)�R−1∗(x, z)) = KR−1∗(A)(z)

By (K1), KR−1∗(KR−1∗(A)) = K∗R−1∗(A) such that

{KR−1∗(A) =
∧
x∈X

(A(x)→ R∗(−, x)) | A ∈ LX}

= τKR−1 = (τKR−1 )∗.

(17) DefineMHJR
(A) = HJR

(A∗). Then

MHJR
: LX → LX

is an L-meet join approximation operator as follows:

MHJR
(A)(y) =

∨
x∈X

(R(y, x)�A∗(x))

=MR−1(A)(y).

Moreover, τMHJR
= (τJR

)∗.

(18) If R is an L-fuzzy preorder, then JR(JR(A)) = JR(A)

for A ∈ LX . By Theorem 2.1(18),

MHJR
(M∗HJR

(A)) =MHJR
(A)

for A ∈ LX such that τMHJR
= (τJ )∗ with

τMHJR
=

{
M∗HJR

(A)(y) =
∧
x∈X

(R(y, x)→ A(x))

= JR−1(A)(y) | A ∈ LX

}
.

(19) Let R−1 be a reflexive and Euclidean L-fuzzy relation.
Since

(R(y, x)→A(x))�R(z, y)�R(z, x)

≤ R(y, x)→ A(x))�R(y, x) ≤ A(x),

then (R(y, x) → A(x)) � R(z, y) ≤ R(z, x) → A(x).
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Thus,

MR−1(MR−1(A))(z)

=
∨
y∈X

(MR−1(A)(y)�R(z, y))

=
∨
y∈X

(
∧
x∈X

(R(y, x)→ A(x))�R(z, y))

≤
∧
x∈X

(R(z, x)→ A(x)) =MR−1(A)(z).

By (M1),MR−1(MR−1(A)) =M∗R−1(A) such that

{MR−1(A) =
∨

x∈X(A∗(x)�R(−, x)) | A ∈ LX}
= τMR−1 = (τMR−1 )∗.

(20) (KHJR
= KR−1∗ ,KJR

= KR∗) is a Galois connec-
tion;i.e, A ≤ KHJR

(B) iff B ≤ KJR
(A). Moreover,

τKJR
= (τKHJR

)∗.

(21) (MJR
=MR,MHJR

=MR−1) is a dual Galois con-
nection;i.e,MHJR

(A) ≤ B iff MJR
(B) ≤ A. More-

over, τMJR
= (τMHJR

)∗.

3. Conclusions

In this paper, L-lower approximation operators induce L-upper
approximation operators by residuated connection. We study
relations lower (upper, join meet, meet join) approximation
operators, Galois (dual Galois, residuated, dual residuated)
connections and Alexandrov L-topologies. Moreover, we give
their examples as approximation operators induced by various
L-fuzzy relations.
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