• Title/Summary/Keyword: approximate quantities

Search Result 28, Processing Time 0.025 seconds

Experiment and modeling of liquid-phase flow in a venturi tube using stereoscopic PIV

  • Song, Yuchen;Shentu, Yunqi;Qian, Yalan;Yin, Junlian;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.79-92
    • /
    • 2021
  • Venturi tube is based on turbulent flow, whereby the microbubbles can be generated by the turbulent fragmentation. This phenomenon is common in several venturi bubblers used by the nuclear, aerospace and chemical industries. The first objective of this paper is to study the liquid-phase velocity field experimentally and develop correlations for the turbulent quantities. The second objective is to research velocity field characteristics theoretically. Stereoscopic PIV measurements for the velocity field have been analyzed and utilized to develop the turbulent kinetic energy in the venturi tube. The tracking properties of the tracer particles have been verified enough for us to analyze the turbulence field. The turbulence kinetic energy has a bimodal distribution trend. Also, the results of turbulence intensity along the horizontal direction is gradually uniform along the downstream. Both the mean velocity and the fluctuation velocity are proportional to the Reynolds number. Besides, the distribution trend of the mean velocity and the velocity fluctuation can be determined by the geometric parameters of the venturi tube. An analytical function model for the flow field has been developed to obtain the approximate analytical solutions. Good agreement is observed between the model predictions and experimental data.

압입축의 파손 저감을 위한 설계 방법에 대한 연구 (Design Method to Reduce the Press-Fitted Assembly Dama)

  • 변성광;최하영;이동형
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.128-134
    • /
    • 2021
  • A press-fitted shaft is an essential part used in industrial machines, and it is generally used to transmit large quantities of power. Very high contact pressure occurs at the end parts of the contact between the shaft and boss, which are press-fitted shaft components. Such contact pressure not only damages the contact surface of a press-fitted shaft but also reduces its fatigue strength. To improve a press-fitted shaft's fatigue strength, the contact pressure on the contact surface, which directly affects the fatigue strength, should be minimized. Thus, in this study, the design configuration optimization of the end part of the boss was based on the approximate optimization method and was aimed at minimizing the contact pressure at the end of a press-fitted shaft. Comparison of the contact pressure and the contact stress of a conventional press-fitted shaft with those of the optimized press-fitted shaft showed that the boss design of the optimized press-fitted shaft effectively improved the fatigue life.

비압축성유동의 수치계산을 위한 표준분할단계방법 및 일관된 경계조건의 개발 (Development of Canonical Fractional-Step Methods and Consistent Boundary Conditions for Computation of Incompressible Flows)

  • 이문주;오병도;김영배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.404-409
    • /
    • 2001
  • An account of second-order fractional-step methods and boundary conditions for the incompressible Navier-Stokes equations is presented. The present work has aimed at (i) identification and analysis of all possible splitting methods of second-order splitting accuracy; and (ii) determination of consistent boundary conditions that yield second-order accurate solutions. It has been found that only three types (D, P and M) of splitting methods called the canonical methods are non-degenerate so that all other second-order splitting schemes are either degenerate or equivalent to them. Investigation of the properties of the canonical methods indicates that a method of type D is recommended for computations in which the zero divergence is preferred, while a method of type P is better suited to the cases when highly-accurate pressure is more desirable. The consistent boundary conditions on the tentative velocity and pressure have been determined by a procedure that consists of approximation of the split equations and the boundary limit of the result. The pressure boundary condition is independent of the type of fractional-step methods. The consistent boundary conditions on the tentative velocity were determined in terms of the natural boundary condition and derivatives of quantities available at the current timestep (to be evaluated by extrapolation). Second-order fractional-step methods that admit the zero pressure-gradient boundary condition have been derived. The boundary condition on the new tentative velocity becomes greatly simplified due to improved accuracy built in the transformation.

  • PDF

비대칭 전극계에서의 1차원적 RF 플라즈마 모델링에 관한 연구 (Study on RF Plasma Modeling Between Unequal-Sized Electrodes Using One-dimensional Fluid Method)

  • 소순열;임장섭
    • 조명전기설비학회논문지
    • /
    • 제18권5호
    • /
    • pp.35-41
    • /
    • 2004
  • 본 연구에서 사용된 방전 기체는 오염물의 제거 및 박막 표면 정제 등의 연구 분야에 응용되고 있는 질소 가스를 사용하였으며, 1차원 동심구 모델의 개발로 인하여, 접지 면적을 넓게 함에 따라 경방향으로의 플라즈마 분포가 중심축의 분포와 동일하다는 1차원적 가정이 적절하지 못하다는 Barnes 모델을 보완할 수 있었다. 일정한 인가 전압하에서는 입체각($\omega$)의 증가에 따라 질소 플라즈마를 구성하는 각 입자의 수밀도 분포, 전계 및 포텐셜이 감소함을 볼 수 있었다. 그러나 면적비가 증가하면서 구동 전극에서의 각 입자들의 움직임은 상대적으로 높은 전계로부터 더욱 활발하게 형성됨에 따라 직렬 연결된 블로킹 콘덴서에서 발생하는 자기 바이어스 전압은 증가하는 것을 알 수 있었다.

A Stochastic Analysis of VOC Emissions from the Distribution Process of the Gasoline

  • Han, Wha-Jin;Song, Yanghoon;Cho, Yongsung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제17권E4호
    • /
    • pp.163-168
    • /
    • 2001
  • Estimating the emission rate of VOCs from a gasoline industry at national level can be a challenging take even though the estimation is mean-based. However, using the procedures in the US EPA AP-42 guidelines, it is possible to approximate the mean industry emission rate once enough data are available. However, this estimate can be misled in the sense that there exist many stochastic factors in the EPA\\`s estimation procedures and also throughout the marketing channels of gasoline industry. Addressing the stochasticity problem in EPA\\`s procedure is hard to tackle because the detailed data needed to execute the estimation are not usually available even from refiners. Instead, this research tries to stay focused on the second type of stochasticity issue, raised from the mean0based metrological and marketing practice data collected from the 4 major refiners. To do so emission raters from each marketing channels (8 marketing points by 3 transportation types and by storage facilities of 4 refiners) are estimated monthly, following AP-42 procedures and using Tank 4.0. Once these estimates are acquired, the distribution of VOC emission rate for each marketing channel of all 4 refiners is estimated through simulation method using @Risk. The mean-based emission rates are weighted by company quantities to estimate the emission rate from the whole gasoline industry. Simple economic implication is provided, based on the result. This study found that, on the mean-bases, about 0.66% of gasoline marketed are evaporated into air. Considering the stochasticity in the estimation, about 90% of simulation results fell into the range of 0.65 to 0.68%. For 90% chance, the estimated economic loss is $54.65 million to $57.17 million, not counting the cost caused by air quality degradation and associated health impact.

  • PDF

산지유역에 대한 USDAHL-74 유역수문모형의 장기유출 해석적용 (Application of SDAHL-74 Watershed Model to a Long Term Runoff Analysis in the Mountainous Watershed)

  • 권순국;고덕구
    • 한국농공학회지
    • /
    • 제29권2호
    • /
    • pp.53-63
    • /
    • 1987
  • Due to their wide range of application, deterministic comprehensive hydrologic models using digital computers have been developed in all countries of the world and researches are being undertaken for their appropriate applications. The aim of this study has been to demonstrate the practical implementation of a physically based distributed hydrologic model, the USDAHL-74 model and to investigate its ability to simulate the long term estimate of water balance quantities in a Korean mountainous watershed. Application of the model to Dochuk watershed indicates the following results. 1.Since the USDAHL-74 model includes all the major components of the hydrologic cycle in agricultural watersheds, thus is comprehnsive, the model seems to have a wide range of application from the fact that simulation results obtained are not only runoff volumes m various time units but their spatial variation as well as even soil moisture within the watershed. 2.An approximate calibration to determine the parameter values in the model using various data obtained from D0chuk shed shows that the simulation error of yearly runoff volume is only 0.6 % and a correlation coefficient between observed daily runoff volume and simulated one is 0.91 in all calibrated period.3.As a verification test of the model, runoff volumes are simulated using 1986 year data without changing the parameter values determined by 1985 year data. The tests show that the USDAHL-74 model is a flexible tool and that realistic production to simulate the long term estimate of runoff in Korean mountainous watershed could be obtained using only a short period of calibration.4. Despite of the encouraging results, there still remain minor problems concerning the practical application of the model to improve the result of simulations. Some of these are the small descrepancies between observed and simulated daily runoff volume appeared in the vicinity of peaks and the recession of1 the daily hydrographs and the model performance for the frozen ground and melting process in the model. 5. Alough the use of parameter with physical significance and the ability to improve calibrations on the basis of physical reasoning represents advantages in the simulation for ungaged watersheds, further researches are needed to use the USDAHL-74 mode to simulate runoff in ungaged watersheds.

  • PDF

The Global Ginseng Market and Korean Ginseng

  • Baeg, In-Ho
    • 인삼문화
    • /
    • 제4권
    • /
    • pp.1-12
    • /
    • 2022
  • Ginseng and ginseng products are distributed in approximately 190 countries around the world. The size of the ginseng market varies by country and there are no accurate statistics on production and distribution amounts per country. Therefore, it is difficult to make predictions about the global ginseng market. Governments and ginseng trading companies are in need of comprehensive data that shows the current status of the ginseng market to help them establish effective import, export, and sales and marketing policies. To addressthis need, this study examines the approximate size of the world ginseng market based on estimates of recent quantities of ginseng distributed in specific country as well as production by major ginseng producing countries. In 2018, global ginseng production was about 86,223 tons based on fresh ginseng. China produced 50,164 tons, South Korea 23,265 tons, Canada 11,367 tons, the US 1,285 tons, Japan 30 tons, and other countries a combined 112 tons. The value of global ginseng production is estimated to be approximately $5,900 million, with $2,870 million (48.6%) in China, $2,489 million (42.2%) in South Korea, $478 million (8.1%) in Canada, $54 million (0.9%) in the USA, $4 million (0.1%) in Japan, and $5 million (0.1%) in other countries. The value of ginseng products consumed for the last five yearsin South Korea was $1,162 million in 2014, $1,280 million in 2015, $1,548 million in 2016, $1,638 million in 2017, and $1,762 million in 2018, showing that the market has been increasing in recent years. In particular, the Korea Ginseng Corporation (KGC), the biggest global ginseng company in South Korea, recorded sales of $1,207 million in 2018. This represents about 69% of the South Korean ginseng market, and about 20% of global production. Since interest in alternative medicine and health food among consumers is increasing globally, the market for ginseng is expected to expand into the future.

Internal Dosimetry: State of the Art and Research Needed

  • Francois Paquet
    • Journal of Radiation Protection and Research
    • /
    • 제47권4호
    • /
    • pp.181-194
    • /
    • 2022
  • Internal dosimetry is a discipline which brings together a set of knowledge, tools and procedures for calculating the dose received after incorporation of radionuclides into the body. Several steps are necessary to calculate the committed effective dose (CED) for workers or members of the public. Each step uses the best available knowledge in the field of radionuclide biokinetics, energy deposition in organs and tissues, the efficiency of radiation to cause a stochastic effect, or in the contributions of individual organs and tissues to overall detriment from radiation. In all these fields, knowledge is abundant and supported by many works initiated several decades ago. That makes the CED a very robust quantity, representing exposure for reference persons in reference situation of exposure and to be used for optimization and assessment of compliance with dose limits. However, the CED suffers from certain limitations, accepted by the International Commission on Radiological Protection (ICRP) for reasons of simplification. Some of its limitations deserve to be overcome and the ICRP is continuously working on this. Beyond the efforts to make the CED an even more reliable and precise tool, there is an increasing demand for personalized dosimetry, particularly in the medical field. To respond to this demand, currently available tools in dosimetry can be adjusted. However, this would require coupling these efforts with a better assessment of the individual risk, which would then have to consider the physiology of the persons concerned but also their lifestyle and medical history. Dosimetry and risk assessment are closely linked and can only be developed in parallel. This paper presents the state of the art of internal dosimetry knowledge and the limitations to be overcome both to make the CED more precise and to develop other dosimetric quantities, which would make it possible to better approximate the individual dose.