DOI QR코드

DOI QR Code

Experiment and modeling of liquid-phase flow in a venturi tube using stereoscopic PIV

  • Song, Yuchen (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Shentu, Yunqi (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Qian, Yalan (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Yin, Junlian (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Wang, Dezhong (School of Mechanical Engineering, Shanghai Jiao Tong University)
  • Received : 2019.10.30
  • Accepted : 2020.06.18
  • Published : 2021.01.25

Abstract

Venturi tube is based on turbulent flow, whereby the microbubbles can be generated by the turbulent fragmentation. This phenomenon is common in several venturi bubblers used by the nuclear, aerospace and chemical industries. The first objective of this paper is to study the liquid-phase velocity field experimentally and develop correlations for the turbulent quantities. The second objective is to research velocity field characteristics theoretically. Stereoscopic PIV measurements for the velocity field have been analyzed and utilized to develop the turbulent kinetic energy in the venturi tube. The tracking properties of the tracer particles have been verified enough for us to analyze the turbulence field. The turbulence kinetic energy has a bimodal distribution trend. Also, the results of turbulence intensity along the horizontal direction is gradually uniform along the downstream. Both the mean velocity and the fluctuation velocity are proportional to the Reynolds number. Besides, the distribution trend of the mean velocity and the velocity fluctuation can be determined by the geometric parameters of the venturi tube. An analytical function model for the flow field has been developed to obtain the approximate analytical solutions. Good agreement is observed between the model predictions and experimental data.

Keywords

Acknowledgement

The authors wish to thank the National Natural Science Foundation of China (No.11535009 and A050507).

References

  1. C.H. Gabbard, Development of a venturi type bubble generator for use in the molthen salt reactor xenon removal system, in: O.R.N. LABORATORY, OAK RIDGE NATIONAL LABORATORY, America, 1972.
  2. D. Bertoldi, C.C.S. Dallalba, J.R. Barbosa, Experimental investigation of two-phase flashing flows of a binary mixture of infinite relative volatility in a Venturi tube, Exp. Therm. Fluid Sci. 64 (2015) 152-163. https://doi.org/10.1016/j.expthermflusci.2015.02.011
  3. J.X. Zhang, Analysis on the effect of venturi tube structural parameters on fluid flow, AIP Adv. 7 (2017), 065315. https://doi.org/10.1063/1.4991441
  4. T.A. Bashir, A.G. Soni, A.V. Mahulkar, A.B. Pandit, The CFD driven optimisation of a modified venturi for cavitational activity, Can. J. Chem. Eng. 89 (2011) 1366-1375. https://doi.org/10.1002/cjce.20500
  5. A. Ulas, Passive flow control in liquid-propellant rocket engines with cavitating venturi, Flow Meas. Instrum. 17 (2006) 93-97. https://doi.org/10.1016/j.flowmeasinst.2005.10.003
  6. J. Manzano, C.V. Palau, M.d.A. Benito, V.d.B. Guilherme, D.V. Vasconcelos, Geometry and head loss in Venturi injectors through computational fluid dynamics, Eng. Agricola 36 (2016) 482-491. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n3p482-491/2016
  7. N. Dittakavi, A. Chunekar, S. Frankel, Large eddy simulation of turbulent-cavitation interactions in a venturi nozzle, J. Fluid Eng. 132 (2010) 121301. https://doi.org/10.1115/1.4001971
  8. S. Shinde, S. Tandon, K. Maki, E. Johnsen, Flow Separation over a Backward-Facing Ramp with and without a Vortex Generator, 2016, https://doi.org/10.2514/6.2016-3795.
  9. J. Zhu, H. Xie, K. Feng, X. Zhang, M. Si, Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube, Int. J. Heat Mass Tran. 112 (2017) 544-552. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.036
  10. R.F.-P.O. Coutier-Delgoshaa1, J.-L. Reboudc, B. Stutzd, Unsteady cavitation in a venturi type section, Multiphas. Sci. Technol. 16 (2004) 207-218. https://doi.org/10.1615/MultScienTechn.v16.i1-3.290
  11. A. Beaulieu, E. Foucault, P. Braud, P. Micheau, P. Szeger, A flowmeter for unsteady liquid flow measurements, Flow Meas. Instrum. 22 (2011) 131-137. https://doi.org/10.1016/j.flowmeasinst.2011.01.001
  12. B. Kashi, H.D. Haustein, Dependence of submerged jet heat transfer on nozzle length, Int. J. Heat Mass Tran. 121 (2018) 137-152. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.064
  13. B. Kashi, E. Weinberg, H.D. Haustein, Analytical re-examination of the submerged laminar jet0 s velocity evolution, Phys. Fluids 30 (2018).
  14. B.K. Edurne Carpintero-Rogero1, Thomas Sattelmayer, Simultaneous HS-PIV and shadowgraph measurements of gas-liquid flows in a horizontal pipe, in: 13th Int. Symp on Appl. Laser Techniques to Fluid Mechanics, 2006. Lisbon, Portugal.
  15. J. Lelouvetel, T. Tanaka, Y. Sato, K. Hishida, Transport mechanisms of the turbulent energy cascade in upward/downward bubbly flows, J. Fluid Mech. 741 (2014) 514-542. https://doi.org/10.1017/jfm.2014.24
  16. R.D. Keane, R.J. Adrian, Theory of cross-correlation analysis of PIV images, Appl. Sci. Res. 49 (1992) 191-215. https://doi.org/10.1007/BF00384623
  17. J. Westerweel, Fundamentals of digital particle image velocimetry, Meas. Sci. Technol. 8 (1997) 1379. https://doi.org/10.1088/0957-0233/8/12/002
  18. F. Scarano, M.L. Riethmuller, Advances in iterative multigrid PIV image processing, Exp. Fluid 29 (2000) S051-S060. https://doi.org/10.1007/s003480070007
  19. F. Pereira, A. Ciarravano, F.D. Felice, G.P. Romano, ADAPTIVE MULTI-FRAME PIV, DOI.
  20. S. Sharma, DARTPIV : Dynamic Adaptive Real-Time Particle Image Velocimetry, Massachusetts Institute of Technology, 2013.
  21. X. Zhou, B. Doup, X. Sun, Measurements of liquid-phase turbulence in gaseliquid two-phase flows using particle image velocimetry, Meas. Sci. Technol. 24 (2013) 125303. https://doi.org/10.1088/0957-0233/24/12/125303
  22. A. Sciacchitano, Uncertainty Quantification in Particle Image Velocimetry and Advances in Time-Resolved Image and Data Analysis, 2014.
  23. J. Westerweel, Fundamentals of Digital Particle Image Velocimetry, 1999.
  24. A. Sciacchitano, B. Wieneke, F. Scarano, PIV uncertainty quantification by image matching, Meas. Sci. Technol. 24 (2013), 045302. https://doi.org/10.1088/0957-0233/24/4/045302
  25. H. Martin, Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces, Adv. Heat Tran. 13 (1977) 1-60. https://doi.org/10.1016/S0065-2717(08)70221-1
  26. J.M. Davies, J.F. Hutton, K. Walters, A critical re-appraisal of the jet-thrust technique for normal stresses, with particular reference to axial velocity and stress rearrangement at the exit plane, J. Non-newton Fluid Mech. 3 (1977) 141-160, https://doi.org/10.1016/0377-0257(77)80046-3.
  27. B. Kashi, H.D. Haustein, M. Transfer, Dependence of submerged jet heat transfer on nozzle length, Int. J. Heat Mass Tran. 121 (2018) 137-152. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.064
  28. H.D. Haustein, R.S. Harnik, W.J.P.o.F. Rohlfs, A Simple Hydrodynamic Model of a Laminar Free-Surface Jet in Horizontal or Vertical Flight, vol. 29, 2017, 082105.
  29. S. Luk, Y.H. Lee, Mass transfer in eddies close to air-water interface, AIChE J. 32 (1986) 1546-1554. https://doi.org/10.1002/aic.690320915
  30. R. Andersson, B. Andersson, On the breakup of fluid particles in turbulent flows, AIChE J. 52 (2006) 2020-2030. https://doi.org/10.1002/aic.10831
  31. R. Andersson, B. Andersson, Modeling the breakup of fluid particles in turbulent flows, AIChE J. 52 (2006) 2031-2038. https://doi.org/10.1002/aic.10832
  32. J. Yin, J. Li, H. Li, W. Liu, D. Wang, Experimental study on the bubble generation characteristics for an venturi type bubble generator, Int. J. Heat Mass Tran. 91 (2015) 218-224. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.076
  33. Y. Liao, D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci. 64 (2009) 3389-3406. https://doi.org/10.1016/j.ces.2009.04.026
  34. H.A. Stone, L.G. Leal, The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers, J. Fluid Mech. 206 (2006) 223-263. https://doi.org/10.1017/S0022112089002296
  35. F. Risso, J. Fabre, Oscillations and breakup of a bubble immersed in a turbulent field, J. Fluid Mech. 372 (1998) 323-355. https://doi.org/10.1017/S0022112098002705

Cited by

  1. Numerical studies on bubble dynamics in an unsteady turbulence of the venturi bubble generator applied to TMSR vol.160, 2021, https://doi.org/10.1016/j.anucene.2021.108322