Acknowledgement
The authors wish to thank the National Natural Science Foundation of China (No.11535009 and A050507).
References
- C.H. Gabbard, Development of a venturi type bubble generator for use in the molthen salt reactor xenon removal system, in: O.R.N. LABORATORY, OAK RIDGE NATIONAL LABORATORY, America, 1972.
- D. Bertoldi, C.C.S. Dallalba, J.R. Barbosa, Experimental investigation of two-phase flashing flows of a binary mixture of infinite relative volatility in a Venturi tube, Exp. Therm. Fluid Sci. 64 (2015) 152-163. https://doi.org/10.1016/j.expthermflusci.2015.02.011
- J.X. Zhang, Analysis on the effect of venturi tube structural parameters on fluid flow, AIP Adv. 7 (2017), 065315. https://doi.org/10.1063/1.4991441
- T.A. Bashir, A.G. Soni, A.V. Mahulkar, A.B. Pandit, The CFD driven optimisation of a modified venturi for cavitational activity, Can. J. Chem. Eng. 89 (2011) 1366-1375. https://doi.org/10.1002/cjce.20500
- A. Ulas, Passive flow control in liquid-propellant rocket engines with cavitating venturi, Flow Meas. Instrum. 17 (2006) 93-97. https://doi.org/10.1016/j.flowmeasinst.2005.10.003
- J. Manzano, C.V. Palau, M.d.A. Benito, V.d.B. Guilherme, D.V. Vasconcelos, Geometry and head loss in Venturi injectors through computational fluid dynamics, Eng. Agricola 36 (2016) 482-491. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n3p482-491/2016
- N. Dittakavi, A. Chunekar, S. Frankel, Large eddy simulation of turbulent-cavitation interactions in a venturi nozzle, J. Fluid Eng. 132 (2010) 121301. https://doi.org/10.1115/1.4001971
- S. Shinde, S. Tandon, K. Maki, E. Johnsen, Flow Separation over a Backward-Facing Ramp with and without a Vortex Generator, 2016, https://doi.org/10.2514/6.2016-3795.
- J. Zhu, H. Xie, K. Feng, X. Zhang, M. Si, Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube, Int. J. Heat Mass Tran. 112 (2017) 544-552. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.036
- R.F.-P.O. Coutier-Delgoshaa1, J.-L. Reboudc, B. Stutzd, Unsteady cavitation in a venturi type section, Multiphas. Sci. Technol. 16 (2004) 207-218. https://doi.org/10.1615/MultScienTechn.v16.i1-3.290
- A. Beaulieu, E. Foucault, P. Braud, P. Micheau, P. Szeger, A flowmeter for unsteady liquid flow measurements, Flow Meas. Instrum. 22 (2011) 131-137. https://doi.org/10.1016/j.flowmeasinst.2011.01.001
- B. Kashi, H.D. Haustein, Dependence of submerged jet heat transfer on nozzle length, Int. J. Heat Mass Tran. 121 (2018) 137-152. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.064
- B. Kashi, E. Weinberg, H.D. Haustein, Analytical re-examination of the submerged laminar jet0 s velocity evolution, Phys. Fluids 30 (2018).
- B.K. Edurne Carpintero-Rogero1, Thomas Sattelmayer, Simultaneous HS-PIV and shadowgraph measurements of gas-liquid flows in a horizontal pipe, in: 13th Int. Symp on Appl. Laser Techniques to Fluid Mechanics, 2006. Lisbon, Portugal.
- J. Lelouvetel, T. Tanaka, Y. Sato, K. Hishida, Transport mechanisms of the turbulent energy cascade in upward/downward bubbly flows, J. Fluid Mech. 741 (2014) 514-542. https://doi.org/10.1017/jfm.2014.24
- R.D. Keane, R.J. Adrian, Theory of cross-correlation analysis of PIV images, Appl. Sci. Res. 49 (1992) 191-215. https://doi.org/10.1007/BF00384623
- J. Westerweel, Fundamentals of digital particle image velocimetry, Meas. Sci. Technol. 8 (1997) 1379. https://doi.org/10.1088/0957-0233/8/12/002
- F. Scarano, M.L. Riethmuller, Advances in iterative multigrid PIV image processing, Exp. Fluid 29 (2000) S051-S060. https://doi.org/10.1007/s003480070007
- F. Pereira, A. Ciarravano, F.D. Felice, G.P. Romano, ADAPTIVE MULTI-FRAME PIV, DOI.
- S. Sharma, DARTPIV : Dynamic Adaptive Real-Time Particle Image Velocimetry, Massachusetts Institute of Technology, 2013.
- X. Zhou, B. Doup, X. Sun, Measurements of liquid-phase turbulence in gaseliquid two-phase flows using particle image velocimetry, Meas. Sci. Technol. 24 (2013) 125303. https://doi.org/10.1088/0957-0233/24/12/125303
- A. Sciacchitano, Uncertainty Quantification in Particle Image Velocimetry and Advances in Time-Resolved Image and Data Analysis, 2014.
- J. Westerweel, Fundamentals of Digital Particle Image Velocimetry, 1999.
- A. Sciacchitano, B. Wieneke, F. Scarano, PIV uncertainty quantification by image matching, Meas. Sci. Technol. 24 (2013), 045302. https://doi.org/10.1088/0957-0233/24/4/045302
- H. Martin, Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces, Adv. Heat Tran. 13 (1977) 1-60. https://doi.org/10.1016/S0065-2717(08)70221-1
- J.M. Davies, J.F. Hutton, K. Walters, A critical re-appraisal of the jet-thrust technique for normal stresses, with particular reference to axial velocity and stress rearrangement at the exit plane, J. Non-newton Fluid Mech. 3 (1977) 141-160, https://doi.org/10.1016/0377-0257(77)80046-3.
- B. Kashi, H.D. Haustein, M. Transfer, Dependence of submerged jet heat transfer on nozzle length, Int. J. Heat Mass Tran. 121 (2018) 137-152. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.064
- H.D. Haustein, R.S. Harnik, W.J.P.o.F. Rohlfs, A Simple Hydrodynamic Model of a Laminar Free-Surface Jet in Horizontal or Vertical Flight, vol. 29, 2017, 082105.
- S. Luk, Y.H. Lee, Mass transfer in eddies close to air-water interface, AIChE J. 32 (1986) 1546-1554. https://doi.org/10.1002/aic.690320915
- R. Andersson, B. Andersson, On the breakup of fluid particles in turbulent flows, AIChE J. 52 (2006) 2020-2030. https://doi.org/10.1002/aic.10831
- R. Andersson, B. Andersson, Modeling the breakup of fluid particles in turbulent flows, AIChE J. 52 (2006) 2031-2038. https://doi.org/10.1002/aic.10832
- J. Yin, J. Li, H. Li, W. Liu, D. Wang, Experimental study on the bubble generation characteristics for an venturi type bubble generator, Int. J. Heat Mass Tran. 91 (2015) 218-224. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.076
- Y. Liao, D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci. 64 (2009) 3389-3406. https://doi.org/10.1016/j.ces.2009.04.026
- H.A. Stone, L.G. Leal, The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers, J. Fluid Mech. 206 (2006) 223-263. https://doi.org/10.1017/S0022112089002296
- F. Risso, J. Fabre, Oscillations and breakup of a bubble immersed in a turbulent field, J. Fluid Mech. 372 (1998) 323-355. https://doi.org/10.1017/S0022112098002705
Cited by
- Numerical studies on bubble dynamics in an unsteady turbulence of the venturi bubble generator applied to TMSR vol.160, 2021, https://doi.org/10.1016/j.anucene.2021.108322