DOI QR코드

DOI QR Code

Internal Dosimetry: State of the Art and Research Needed

  • Francois Paquet (Institut de Radioprotection et de Surete Nucleaire IRSN/PSE-ENV/SEREN)
  • Received : 2021.08.02
  • Accepted : 2022.08.12
  • Published : 2022.12.31

Abstract

Internal dosimetry is a discipline which brings together a set of knowledge, tools and procedures for calculating the dose received after incorporation of radionuclides into the body. Several steps are necessary to calculate the committed effective dose (CED) for workers or members of the public. Each step uses the best available knowledge in the field of radionuclide biokinetics, energy deposition in organs and tissues, the efficiency of radiation to cause a stochastic effect, or in the contributions of individual organs and tissues to overall detriment from radiation. In all these fields, knowledge is abundant and supported by many works initiated several decades ago. That makes the CED a very robust quantity, representing exposure for reference persons in reference situation of exposure and to be used for optimization and assessment of compliance with dose limits. However, the CED suffers from certain limitations, accepted by the International Commission on Radiological Protection (ICRP) for reasons of simplification. Some of its limitations deserve to be overcome and the ICRP is continuously working on this. Beyond the efforts to make the CED an even more reliable and precise tool, there is an increasing demand for personalized dosimetry, particularly in the medical field. To respond to this demand, currently available tools in dosimetry can be adjusted. However, this would require coupling these efforts with a better assessment of the individual risk, which would then have to consider the physiology of the persons concerned but also their lifestyle and medical history. Dosimetry and risk assessment are closely linked and can only be developed in parallel. This paper presents the state of the art of internal dosimetry knowledge and the limitations to be overcome both to make the CED more precise and to develop other dosimetric quantities, which would make it possible to better approximate the individual dose.

Keywords

Acknowledgement

This manuscript results from years of work and discussions with ICRP colleagues and more especially with H. Metivier, J.D. Harrison, R.W. Leggett, and M.R. Bailey. The author is very grateful for their contribution to my education in this field.

References

  1. National Council on Radiation Protection and Measurements. Maximum permissible amounts of radioisotopes in the human body and maximum permissible concentrations in air and water. Report of the National Committee on Radiation Protection, National bureau of Standards Handbook 52. Washington, DC: US Government Printing Office; 1953.
  2. ICRP. Recommendations of the International Commission on Radiological Protection. Br J Radiol. 1955;Suppl 6:1-92.
  3. Recommendations of the International Commission on Radiological Protection: adopted September 9, 1958. Ann ICRP. 1959;OS_1(1):iii-x.
  4. Clarke RH, Holm LE. Development of ICRP's philosophy on the environment. A report of environmental protection: the concept and use of reference animals and plants. ICRP Publication 108. Ann ICRP. 2008;38(4-6):3-242. https://doi.org/10.1016/j.icrp.2009.04.002
  5. Eckerman K, Endo A. ICRP Publication 107. Nuclear decay data for dosimetric calculations. Ann ICRP. 2008;38(3):7-96. https://doi.org/10.1016/j.icrp.2008.10.005
  6. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37(2-4):1-332. https://doi.org/10.1016/j.icrp.2007.11.001
  7. Paquet F, Etherington G, Bailey MR, Leggett RW, Lipsztein J, Bolch W, et al. ICRP Publication 130. Occupational intakes of radionuclides: part 1. Ann ICRP. 2015;44(2):5-188. https://doi.org/10.1177/0146645315577539
  8. Menzel HG, Clement C, DeLuca P. ICRP Publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP. 2009;39(2):1-164. https://doi.org/10.1016/j.icrp.2009.07.001
  9. Paquet F, Bailey MR, Leggett RW, Lipsztein J, Fell TP, Smith T, et al. ICRP Publication 134. Occupational intakes of radionuclides: part 2. Ann ICRP. 2016;45(3-4):7-349. https://doi.org/10.1177/0146645316670045
  10. Paquet F, Bailey MR, Leggett RW, Lipsztein J, Marsh J, Fell TP, et al. ICRP Publication 137. Occupational intakes of radionuclides: part 3. Ann ICRP. 2017;46(3-4):1-486. https://doi.org/10.1177/0146645317734963
  11. Paquet F, Bailey MR, Leggett RW, Etherington G, Blanchardon E, Smith T, et al. ICRP Publication 141. Occupational intakes of radionuclides: part 4. Ann ICRP. 2019;48(2-3):9-501. https://doi.org/10.1177/0146645319834139
  12. Paquet F, Leggett RW, Blanchardon E, Bailey MR, Gregoratto D, Smith T, et al. ICRP Publication 151. Occupational intakes of radionuclides: part 5. Ann ICRP. 2022;51(1-2):11-415. https://doi.org/10.1177/01466453211028755
  13. International Commission on Radiological Protection. ICRP Publication 100. Human alimentary tract model for radiological protection. A report of The International Commission on Radiological Protection. Ann ICRP. 2006;36(1-2):25-327. https://doi.org/10.1016/j.icrp.2006.03.004
  14. Bolch WE, Jokisch D, Zankl M, Eckerman KF, Fell T, Manger R, et al. ICRP Publication 133. The ICRP computational framework for internal dose assessment for reference adults: specific absorbed fractions. Ann ICRP. 2016;45(2):5-73. https://doi.org/10.1177/0146645316661077
  15. Bolch WE, Eckerman K, Endo A, Hunt JG, Jokisch DW, Kim CH, et al. ICRP Publication 143. Paediatric reference computational phantoms. Ann ICRP. 2020;49(1):5-297.
  16. Kim CH, Yeom YS, Petoussi-Henss N, Zankl M, Bolch WE, Lee C, et al. ICRP Publication 145. Adult mesh-type reference computational phantoms. Ann ICRP. 2020;49:13-201. https://doi.org/10.1177/0146645319893605
  17. European Commission. Radiation protection N° 188: technical recommendations for monitoring individuals for occupational intakes of radionuclides. Luxembourg: Publications Office of the European Union; 2018.
  18. International Atomic Energy Agency (IAEA). Methods for assessing occupational radiation doses due to intakes of radionuclides. Vienna: IAEA; 2004.
  19. Xu XG, Eckerman KF, editors. Handbook of anatomical models for radiation dosimetry. CRC Press; 2009.
  20. National Council on Radiation Protection and Measurements (NCRP). Uncertainties in internal radiation dose assessment. NCRP Report 164. Bethesda, MD: NCRP; 2009.
  21. Limits for intake of radionuclides by workers. ICRP Publication 30: part 1. Ann ICRP. 1979;2(3-4):1-116. https://doi.org/10.1016/0146-6453(79)90064-2
  22. Limits for intakes of radionuclides by workers. A report of committee 2 of the International Commission on Radiological Protection. ICRP Publication 30: part 2. Ann ICRP. 1980;4(3-4):1-71. https://doi.org/10.1016/0146-6453(80)90016-0
  23. Limits for intakes of radionuclides by workers. ICRP Publication 30: part 3. Ann ICRP. 1981;6(2-3):1-124. https://doi.org/10.1016/0146-6453(81)90083-X
  24. Limits for intakes of radionuclides by workers: an addendum. A report of a Task Group of Committee 2 of the International Commission of Radological Protection. ICRP Publication 30: part 4. Ann ICRP. 1988;19(4):1-163. https://doi.org/10.1016/0146-6453(88)90019-X
  25. Age-dependent doses to members of the public from intake of radionuclides: part 1. A report of a Task Group Committee of the International Commission on Radiological Protection. ICRP Publication 56. Ann ICRP. 1989;20(2):1-122. https://doi.org/10.1016/0146-6453(89)90003-1
  26. Age-dependent doses to members of the public from intake of radionuclides: part 2. Ingestion dose coefficients. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. ICRP Publication 67. Ann ICRP. 1993;23(3-4):1-167. https://doi.org/10.1016/0146-6453(93)90015-Z
  27. Age-dependent doses to members of the public from intake of radionuclides: part 3. Ingestion dose coefficients. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. ICRP Publication 69. Ann ICRP. 1995;25(1):1-74. https://doi.org/10.1016/S0146-6453(00)80002-0
  28. Age-dependent doses to members of the public from intake of radionuclides: part 4. Inhalation dose coefficients. A report of a task group of Committee 2 of the International Commission on Radiological Protection. ICRP Publication 71. Ann ICRP. 1995;25(3-4):1-405.
  29. Age-dependent doses to members of the public from intake of radionuclides: part 5. Compilation of ingestion and inhalation dose coefficients. ICRP Publication 72. Ann ICRP. 1996;26(1):1-91. https://doi.org/10.1016/S0146-6453(00)89192-7
  30. Doses to the embryo and fetus from intakes of radionuclides by the mother. A report of The International Commission on Radiological Protection. ICRP Publication 88. Ann ICRP. 2001;31(1-3):19-515. https://doi.org/10.1016/S0146-6453(01)00022-7
  31. International Commission on Radiological Protection. Annals of the ICRP. A report of: doses to infants from ingestion of radionuclides in mothers' milk. ICRP Publication 95. Ann ICRP. 2004;34(3-4):15-280.
  32. Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. ICRP Publication 66. Ann ICRP. 1994;24(1-3):1-482. https://doi.org/10.1016/0146-6453(94)90029-9
  33. National Council on Radiation Protection and Measurements (NCRP). Development of a biokinetic model for radionuclide-contaminated wounds and procedures for their assessment, dosimetry and treatment. NCRP Report 156. Bethesda, MD: NCRP; 2007.
  34. Alkaline earth metabolism in adult man. ICRP Publication 20. Ann ICRP. 1973;OS_20(1);i-vii.
  35. Individual monitoring for intakes of radionuclides by workers: design and interpretation. A report of a Task Group of Committee 4 of the International Commission on Radiological Protection. ICRP Publication 54. Ann ICRP. 1988;19(1-3):1-315. https://doi.org/10.1016/0146-6453(88)90047-4
  36. Individual monitoring for internal exposure of workers replacement of ICRP publication 54. ICRP Publication 78. Ann ICRP. 1997;27(3-4):1-161. https://doi.org/10.1016/S0146-6453(98)00004-9
  37. Berkovski V, Bonchuk Y, Ratia G. 'Dose per unit content' functions: a robust tool for the interpretation of bioassay data. Radiat Prot Dosimetry. 2003;105(1-4):399-402. https://doi.org/10.1093/oxfordjournals.rpd.a006268
  38. Fisher HL, Snyder WS. Distribution of dose in the body from a source of gamma rays distributed uniformly in an organ. In: Proceedings of the First International Congress of Radiation Protection. Amsterdam, Netherlands: Pergamon; 1968. p. 1473-1486.
  39. Cristy M, Eckerman KF. Specific absorbed fractions of energy at various ages from internal photons sources. 1. Methods. Oak Ridge, TN: Oak Ridge National Laboratory; 1987.
  40. Zankl M, Veit R, Williams G, Schneider K, Fendel H, Petoussi N, et al. The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiat Environ Biophys. 1988;27(2):153-164.
  41. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann ICRP. 2002;32(3-4):5-265. https://doi.org/10.1016/S0146-6453(02)00021-0
  42. Jones DG. A realistic anthropomorphic phantom for calculating specific absorbed fractions of energy deposited from internal gamma emitters. Radiat Prot Dosimetry. 1998;79(1-4):411-414. https://doi.org/10.1093/oxfordjournals.rpd.a032439
  43. Smith T, Petoussi-Henss N, Zankl M. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a "family" of phantoms. Eur J Nucl Med. 2000;27(9):1387-1398. https://doi.org/10.1007/s002590000294
  44. Harrison JD, Paquet F. Overview of ICRP Committee 2: doses from radiation exposure. Ann ICRP. 2016;45(1 Suppl):17-24. https://doi.org/10.1177/0146645316633592
  45. Task Group on Radiation Quality Effects in Radiological Protection, Committee 1 on Radiation Effects, International Commission on Radiological Protection. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (wR). A report of the International Commission on Radiological Protection. ICRP Publication 92. Ann ICRP. 2003;33(4):1-117. https://doi.org/10.1016/S0146-6453(03)00024-1
  46. Rossi HH, Zaider M. Contribution of neutrons to the biological effects in Hiroshima. Health Phys. 1990;58(5):645-647.
  47. Ujeno Y. Relative biological effectiveness (RBE) of tritium beta rays in relation to dose rate. Health Phys. 1983;45(3):789-791.
  48. Paquet F, Bailey MR, Leggett RW, Harrison JD. Assessment and interpretation of internal doses: uncertainty and variability. Ann ICRP. 2016;45(1 Suppl):202-214. https://doi.org/10.1177/0146645316633595
  49. Edwards AA. Neutron RBE values and their relationship to judgements in radiological protection. J Radiol Prot. 1999;19(2):93-105. https://doi.org/10.1088/0952-4746/19/2/201
  50. Harrison JD, Leggett, RW, Nosske D, Paquet F, Phipps A, Taylor DM, et al. Reliability of the ICRP's dose coefficients for members of the public, II. Uncertainties in the absorption of ingested radionuclides and the effect on dose estimates. Radiat Prot Dosimetry. 2001;95(4):295-308. https://doi.org/10.1093/oxfordjournals.rpd.a006554
  51. Leggett RW. Reliability of the ICRP's dose coefficients for members of the public. 1. Sources of uncertainty in the biokinetic models. Radiat Prot Dosimetry. 2001;95(3):199-213. https://doi.org/10.1093/oxfordjournals.rpd.a006543
  52. Leggett RW, Bouville A, Eckerman KF. Reliability of the ICRP's systemic biokinetic models. Radiat Prot Dosimetry. 1998;79(1-4):335-342. https://doi.org/10.1093/oxfordjournals.rpd.a032422
  53. Radiation dose to patients from radiopharmaceuticals. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. ICRP Publication 53. Ann ICRP. 1987;18(1-4):1-377. https://doi.org/10.1016/0146-6453(87)90003-0
  54. Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Nosske D, Riklund KA, et al. Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. ICRP Publication 128. Ann ICRP. 2015;44(2 Suppl):7-321.
  55. Radiological Protection in Biomedical Research. ICRP Publication 62. Ann ICRP. 1992;22(3):1-72.
  56. Radiation dose to patients from radiopharmaceuticals: addendum 2 to ICRP Publication 53. ICRP Publication 80. Ann ICRP. 1998;28(3):1-126. https://doi.org/10.1016/S0146-6453(99)00006-8
  57. ICRP. Radiation dose to patients from radiopharmaceuticals: addendum 3 to ICRP Publication 53. ICRP Publication 106. Ann ICRP. 2008;38(1-2):1-197. https://doi.org/10.1016/j.icrp.2009.04.001
  58. Stradling GN, Henge-Napoli MH, Paquet F, Poncy JL, Fritsch P, Taylor DM. Approaches for experimental evaluation of chelating agents. Radiat Prot Dosimetry. 2000;87(1):19-28. https://doi.org/10.1093/oxfordjournals.rpd.a032976
  59. Konzen K, Brey R, Development of the plutonium-DTPA biokinetic model. Health Phys. 2015; 108(6):565-573. https://doi.org/10.1097/HP.0000000000000283
  60. Dumit S, Avtandilashvili M, Strom DJ, McComish SL, Tabatadze G, Tolmachev SY. Improved modeling of plutonium-DTPA decorporation. Radiat Res. 2019;191(2):201-210. https://doi.org/10.1667/rr15188.1
  61. Breustedt B, Blanchardon E, Berard P, Fritsch P, Giussani A, Lopez MA, et al. The CONRAD approach to biokinetic modeling of DTPA decorporation therapy. Health Phys. 2010;99(4):547-552. https://doi.org/10.1097/HP.0b013e3181bfba02
  62. Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol. 1994;65(1):7-17. https://doi.org/10.1080/09553009414550021
  63. Hall EJ, Astor M, Bedford J, Borek C, Curtis SB, Fry M, et al. Basic radiobiology. Am J Clin Oncol. 1988;11(3):220-252. https://doi.org/10.1097/00000421-198806000-00003
  64. Paquet F, Barbey P, Bardies M, Biau A, Blanchardon E, Chetioui A, et al. The assessment and management of risks associated with exposures to short-range Auger- and beta-emitting radionuclides. State of the art and proposals for lines of research. J Radiol Prot. 2013;33(1):R1-R16. https://doi.org/10.1088/0952-4746/33/1/R1
  65. Samei E, Applegate K, Bochud F, Mahesh M, Martin C, Paquet F, et al. Towards potential harm assessment from the individual patient radiation dose in imaging procedures: a proposal for a new quantity. Med Phys Int. 2022;10(1):71-74.
  66. Incerti S, Douglass M, Penfold S, Guatelli S, Bezak E. Review of Geant4-DNA applications for micro and nanoscale simulations. Phys Med. 2016;32(10):1187-1200. https://doi.org/10.1016/j.ejmp.2016.09.007