Browse > Article
http://dx.doi.org/10.14407/jrpr.2021.00297

Internal Dosimetry: State of the Art and Research Needed  

Francois Paquet (Institut de Radioprotection et de Surete Nucleaire IRSN/PSE-ENV/SEREN)
Publication Information
Journal of Radiation Protection and Research / v.47, no.4, 2022 , pp. 181-194 More about this Journal
Abstract
Internal dosimetry is a discipline which brings together a set of knowledge, tools and procedures for calculating the dose received after incorporation of radionuclides into the body. Several steps are necessary to calculate the committed effective dose (CED) for workers or members of the public. Each step uses the best available knowledge in the field of radionuclide biokinetics, energy deposition in organs and tissues, the efficiency of radiation to cause a stochastic effect, or in the contributions of individual organs and tissues to overall detriment from radiation. In all these fields, knowledge is abundant and supported by many works initiated several decades ago. That makes the CED a very robust quantity, representing exposure for reference persons in reference situation of exposure and to be used for optimization and assessment of compliance with dose limits. However, the CED suffers from certain limitations, accepted by the International Commission on Radiological Protection (ICRP) for reasons of simplification. Some of its limitations deserve to be overcome and the ICRP is continuously working on this. Beyond the efforts to make the CED an even more reliable and precise tool, there is an increasing demand for personalized dosimetry, particularly in the medical field. To respond to this demand, currently available tools in dosimetry can be adjusted. However, this would require coupling these efforts with a better assessment of the individual risk, which would then have to consider the physiology of the persons concerned but also their lifestyle and medical history. Dosimetry and risk assessment are closely linked and can only be developed in parallel. This paper presents the state of the art of internal dosimetry knowledge and the limitations to be overcome both to make the CED more precise and to develop other dosimetric quantities, which would make it possible to better approximate the individual dose.
Keywords
Internal Dosimetry; Committed Effective Dose; State of the Art; Gaps;
Citations & Related Records
연도 인용수 순위
  • Reference
1 National Council on Radiation Protection and Measurements. Maximum permissible amounts of radioisotopes in the human body and maximum permissible concentrations in air and water. Report of the National Committee on Radiation Protection, National bureau of Standards Handbook 52. Washington, DC: US Government Printing Office; 1953.
2 ICRP. Recommendations of the International Commission on Radiological Protection. Br J Radiol. 1955;Suppl 6:1-92.
3 Recommendations of the International Commission on Radiological Protection: adopted September 9, 1958. Ann ICRP. 1959;OS_1(1):iii-x.
4 Clarke RH, Holm LE. Development of ICRP's philosophy on the environment. A report of environmental protection: the concept and use of reference animals and plants. ICRP Publication 108. Ann ICRP. 2008;38(4-6):3-242.   DOI
5 Eckerman K, Endo A. ICRP Publication 107. Nuclear decay data for dosimetric calculations. Ann ICRP. 2008;38(3):7-96.   DOI
6 The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37(2-4):1-332.   DOI
7 Paquet F, Etherington G, Bailey MR, Leggett RW, Lipsztein J, Bolch W, et al. ICRP Publication 130. Occupational intakes of radionuclides: part 1. Ann ICRP. 2015;44(2):5-188.   DOI
8 Menzel HG, Clement C, DeLuca P. ICRP Publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP. 2009;39(2):1-164.   DOI
9 Paquet F, Bailey MR, Leggett RW, Lipsztein J, Fell TP, Smith T, et al. ICRP Publication 134. Occupational intakes of radionuclides: part 2. Ann ICRP. 2016;45(3-4):7-349.   DOI
10 Paquet F, Bailey MR, Leggett RW, Lipsztein J, Marsh J, Fell TP, et al. ICRP Publication 137. Occupational intakes of radionuclides: part 3. Ann ICRP. 2017;46(3-4):1-486.   DOI
11 Paquet F, Bailey MR, Leggett RW, Etherington G, Blanchardon E, Smith T, et al. ICRP Publication 141. Occupational intakes of radionuclides: part 4. Ann ICRP. 2019;48(2-3):9-501.   DOI
12 Paquet F, Leggett RW, Blanchardon E, Bailey MR, Gregoratto D, Smith T, et al. ICRP Publication 151. Occupational intakes of radionuclides: part 5. Ann ICRP. 2022;51(1-2):11-415.   DOI
13 International Commission on Radiological Protection. ICRP Publication 100. Human alimentary tract model for radiological protection. A report of The International Commission on Radiological Protection. Ann ICRP. 2006;36(1-2):25-327.   DOI
14 Bolch WE, Jokisch D, Zankl M, Eckerman KF, Fell T, Manger R, et al. ICRP Publication 133. The ICRP computational framework for internal dose assessment for reference adults: specific absorbed fractions. Ann ICRP. 2016;45(2):5-73.   DOI
15 Bolch WE, Eckerman K, Endo A, Hunt JG, Jokisch DW, Kim CH, et al. ICRP Publication 143. Paediatric reference computational phantoms. Ann ICRP. 2020;49(1):5-297.
16 Kim CH, Yeom YS, Petoussi-Henss N, Zankl M, Bolch WE, Lee C, et al. ICRP Publication 145. Adult mesh-type reference computational phantoms. Ann ICRP. 2020;49:13-201.   DOI
17 European Commission. Radiation protection N° 188: technical recommendations for monitoring individuals for occupational intakes of radionuclides. Luxembourg: Publications Office of the European Union; 2018.
18 International Atomic Energy Agency (IAEA). Methods for assessing occupational radiation doses due to intakes of radionuclides. Vienna: IAEA; 2004.
19 National Council on Radiation Protection and Measurements (NCRP). Uncertainties in internal radiation dose assessment. NCRP Report 164. Bethesda, MD: NCRP; 2009.
20 Xu XG, Eckerman KF, editors. Handbook of anatomical models for radiation dosimetry. CRC Press; 2009.
21 Limits for intake of radionuclides by workers. ICRP Publication 30: part 1. Ann ICRP. 1979;2(3-4):1-116.   DOI
22 Limits for intakes of radionuclides by workers. A report of committee 2 of the International Commission on Radiological Protection. ICRP Publication 30: part 2. Ann ICRP. 1980;4(3-4):1-71.   DOI
23 Limits for intakes of radionuclides by workers. ICRP Publication 30: part 3. Ann ICRP. 1981;6(2-3):1-124.   DOI
24 Limits for intakes of radionuclides by workers: an addendum. A report of a Task Group of Committee 2 of the International Commission of Radological Protection. ICRP Publication 30: part 4. Ann ICRP. 1988;19(4):1-163.   DOI
25 Age-dependent doses to members of the public from intake of radionuclides: part 1. A report of a Task Group Committee of the International Commission on Radiological Protection. ICRP Publication 56. Ann ICRP. 1989;20(2):1-122.   DOI
26 Age-dependent doses to members of the public from intake of radionuclides: part 2. Ingestion dose coefficients. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. ICRP Publication 67. Ann ICRP. 1993;23(3-4):1-167.   DOI
27 Age-dependent doses to members of the public from intake of radionuclides: part 3. Ingestion dose coefficients. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. ICRP Publication 69. Ann ICRP. 1995;25(1):1-74.   DOI
28 Doses to the embryo and fetus from intakes of radionuclides by the mother. A report of The International Commission on Radiological Protection. ICRP Publication 88. Ann ICRP. 2001;31(1-3):19-515.   DOI
29 Age-dependent doses to members of the public from intake of radionuclides: part 4. Inhalation dose coefficients. A report of a task group of Committee 2 of the International Commission on Radiological Protection. ICRP Publication 71. Ann ICRP. 1995;25(3-4):1-405.
30 Age-dependent doses to members of the public from intake of radionuclides: part 5. Compilation of ingestion and inhalation dose coefficients. ICRP Publication 72. Ann ICRP. 1996;26(1):1-91.   DOI
31 International Commission on Radiological Protection. Annals of the ICRP. A report of: doses to infants from ingestion of radionuclides in mothers' milk. ICRP Publication 95. Ann ICRP. 2004;34(3-4):15-280.
32 Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. ICRP Publication 66. Ann ICRP. 1994;24(1-3):1-482.   DOI
33 National Council on Radiation Protection and Measurements (NCRP). Development of a biokinetic model for radionuclide-contaminated wounds and procedures for their assessment, dosimetry and treatment. NCRP Report 156. Bethesda, MD: NCRP; 2007.
34 Alkaline earth metabolism in adult man. ICRP Publication 20. Ann ICRP. 1973;OS_20(1);i-vii.
35 Individual monitoring for intakes of radionuclides by workers: design and interpretation. A report of a Task Group of Committee 4 of the International Commission on Radiological Protection. ICRP Publication 54. Ann ICRP. 1988;19(1-3):1-315.   DOI
36 Individual monitoring for internal exposure of workers replacement of ICRP publication 54. ICRP Publication 78. Ann ICRP. 1997;27(3-4):1-161.   DOI
37 Zankl M, Veit R, Williams G, Schneider K, Fendel H, Petoussi N, et al. The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiat Environ Biophys. 1988;27(2):153-164.
38 Berkovski V, Bonchuk Y, Ratia G. 'Dose per unit content' functions: a robust tool for the interpretation of bioassay data. Radiat Prot Dosimetry. 2003;105(1-4):399-402.   DOI
39 Fisher HL, Snyder WS. Distribution of dose in the body from a source of gamma rays distributed uniformly in an organ. In: Proceedings of the First International Congress of Radiation Protection. Amsterdam, Netherlands: Pergamon; 1968. p. 1473-1486.
40 Cristy M, Eckerman KF. Specific absorbed fractions of energy at various ages from internal photons sources. 1. Methods. Oak Ridge, TN: Oak Ridge National Laboratory; 1987.
41 Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann ICRP. 2002;32(3-4):5-265.   DOI
42 Jones DG. A realistic anthropomorphic phantom for calculating specific absorbed fractions of energy deposited from internal gamma emitters. Radiat Prot Dosimetry. 1998;79(1-4):411-414.   DOI
43 Smith T, Petoussi-Henss N, Zankl M. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a "family" of phantoms. Eur J Nucl Med. 2000;27(9):1387-1398.   DOI
44 Harrison JD, Paquet F. Overview of ICRP Committee 2: doses from radiation exposure. Ann ICRP. 2016;45(1 Suppl):17-24.   DOI
45 Paquet F, Bailey MR, Leggett RW, Harrison JD. Assessment and interpretation of internal doses: uncertainty and variability. Ann ICRP. 2016;45(1 Suppl):202-214.   DOI
46 Task Group on Radiation Quality Effects in Radiological Protection, Committee 1 on Radiation Effects, International Commission on Radiological Protection. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (wR). A report of the International Commission on Radiological Protection. ICRP Publication 92. Ann ICRP. 2003;33(4):1-117.   DOI
47 Rossi HH, Zaider M. Contribution of neutrons to the biological effects in Hiroshima. Health Phys. 1990;58(5):645-647.
48 Ujeno Y. Relative biological effectiveness (RBE) of tritium beta rays in relation to dose rate. Health Phys. 1983;45(3):789-791.
49 Edwards AA. Neutron RBE values and their relationship to judgements in radiological protection. J Radiol Prot. 1999;19(2):93-105.   DOI
50 Harrison JD, Leggett, RW, Nosske D, Paquet F, Phipps A, Taylor DM, et al. Reliability of the ICRP's dose coefficients for members of the public, II. Uncertainties in the absorption of ingested radionuclides and the effect on dose estimates. Radiat Prot Dosimetry. 2001;95(4):295-308.   DOI
51 Leggett RW. Reliability of the ICRP's dose coefficients for members of the public. 1. Sources of uncertainty in the biokinetic models. Radiat Prot Dosimetry. 2001;95(3):199-213.   DOI
52 Leggett RW, Bouville A, Eckerman KF. Reliability of the ICRP's systemic biokinetic models. Radiat Prot Dosimetry. 1998;79(1-4):335-342.   DOI
53 Radiation dose to patients from radiopharmaceuticals. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. ICRP Publication 53. Ann ICRP. 1987;18(1-4):1-377.   DOI
54 ICRP. Radiation dose to patients from radiopharmaceuticals: addendum 3 to ICRP Publication 53. ICRP Publication 106. Ann ICRP. 2008;38(1-2):1-197.   DOI
55 Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Nosske D, Riklund KA, et al. Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. ICRP Publication 128. Ann ICRP. 2015;44(2 Suppl):7-321.
56 Radiological Protection in Biomedical Research. ICRP Publication 62. Ann ICRP. 1992;22(3):1-72.
57 Radiation dose to patients from radiopharmaceuticals: addendum 2 to ICRP Publication 53. ICRP Publication 80. Ann ICRP. 1998;28(3):1-126.   DOI
58 Stradling GN, Henge-Napoli MH, Paquet F, Poncy JL, Fritsch P, Taylor DM. Approaches for experimental evaluation of chelating agents. Radiat Prot Dosimetry. 2000;87(1):19-28.   DOI
59 Konzen K, Brey R, Development of the plutonium-DTPA biokinetic model. Health Phys. 2015; 108(6):565-573.   DOI
60 Dumit S, Avtandilashvili M, Strom DJ, McComish SL, Tabatadze G, Tolmachev SY. Improved modeling of plutonium-DTPA decorporation. Radiat Res. 2019;191(2):201-210.   DOI
61 Breustedt B, Blanchardon E, Berard P, Fritsch P, Giussani A, Lopez MA, et al. The CONRAD approach to biokinetic modeling of DTPA decorporation therapy. Health Phys. 2010;99(4):547-552.   DOI
62 Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol. 1994;65(1):7-17.   DOI
63 Hall EJ, Astor M, Bedford J, Borek C, Curtis SB, Fry M, et al. Basic radiobiology. Am J Clin Oncol. 1988;11(3):220-252.   DOI
64 Incerti S, Douglass M, Penfold S, Guatelli S, Bezak E. Review of Geant4-DNA applications for micro and nanoscale simulations. Phys Med. 2016;32(10):1187-1200.   DOI
65 Paquet F, Barbey P, Bardies M, Biau A, Blanchardon E, Chetioui A, et al. The assessment and management of risks associated with exposures to short-range Auger- and beta-emitting radionuclides. State of the art and proposals for lines of research. J Radiol Prot. 2013;33(1):R1-R16.   DOI
66 Samei E, Applegate K, Bochud F, Mahesh M, Martin C, Paquet F, et al. Towards potential harm assessment from the individual patient radiation dose in imaging procedures: a proposal for a new quantity. Med Phys Int. 2022;10(1):71-74.