Browse > Article
http://dx.doi.org/10.1016/j.net.2020.06.027

Experiment and modeling of liquid-phase flow in a venturi tube using stereoscopic PIV  

Song, Yuchen (School of Mechanical Engineering, Shanghai Jiao Tong University)
Shentu, Yunqi (School of Mechanical Engineering, Shanghai Jiao Tong University)
Qian, Yalan (School of Mechanical Engineering, Shanghai Jiao Tong University)
Yin, Junlian (School of Mechanical Engineering, Shanghai Jiao Tong University)
Wang, Dezhong (School of Mechanical Engineering, Shanghai Jiao Tong University)
Publication Information
Nuclear Engineering and Technology / v.53, no.1, 2021 , pp. 79-92 More about this Journal
Abstract
Venturi tube is based on turbulent flow, whereby the microbubbles can be generated by the turbulent fragmentation. This phenomenon is common in several venturi bubblers used by the nuclear, aerospace and chemical industries. The first objective of this paper is to study the liquid-phase velocity field experimentally and develop correlations for the turbulent quantities. The second objective is to research velocity field characteristics theoretically. Stereoscopic PIV measurements for the velocity field have been analyzed and utilized to develop the turbulent kinetic energy in the venturi tube. The tracking properties of the tracer particles have been verified enough for us to analyze the turbulence field. The turbulence kinetic energy has a bimodal distribution trend. Also, the results of turbulence intensity along the horizontal direction is gradually uniform along the downstream. Both the mean velocity and the fluctuation velocity are proportional to the Reynolds number. Besides, the distribution trend of the mean velocity and the velocity fluctuation can be determined by the geometric parameters of the venturi tube. An analytical function model for the flow field has been developed to obtain the approximate analytical solutions. Good agreement is observed between the model predictions and experimental data.
Keywords
Stereoscopic particle image velocimetry; Venturi; Velocity field; Turbulent flow; Velocity function;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Shinde, S. Tandon, K. Maki, E. Johnsen, Flow Separation over a Backward-Facing Ramp with and without a Vortex Generator, 2016, https://doi.org/10.2514/6.2016-3795.
2 C.H. Gabbard, Development of a venturi type bubble generator for use in the molthen salt reactor xenon removal system, in: O.R.N. LABORATORY, OAK RIDGE NATIONAL LABORATORY, America, 1972.
3 J.X. Zhang, Analysis on the effect of venturi tube structural parameters on fluid flow, AIP Adv. 7 (2017), 065315.   DOI
4 T.A. Bashir, A.G. Soni, A.V. Mahulkar, A.B. Pandit, The CFD driven optimisation of a modified venturi for cavitational activity, Can. J. Chem. Eng. 89 (2011) 1366-1375.   DOI
5 J. Manzano, C.V. Palau, M.d.A. Benito, V.d.B. Guilherme, D.V. Vasconcelos, Geometry and head loss in Venturi injectors through computational fluid dynamics, Eng. Agricola 36 (2016) 482-491.   DOI
6 N. Dittakavi, A. Chunekar, S. Frankel, Large eddy simulation of turbulent-cavitation interactions in a venturi nozzle, J. Fluid Eng. 132 (2010) 121301.   DOI
7 B. Kashi, H.D. Haustein, Dependence of submerged jet heat transfer on nozzle length, Int. J. Heat Mass Tran. 121 (2018) 137-152.   DOI
8 R.F.-P.O. Coutier-Delgoshaa1, J.-L. Reboudc, B. Stutzd, Unsteady cavitation in a venturi type section, Multiphas. Sci. Technol. 16 (2004) 207-218.   DOI
9 A. Beaulieu, E. Foucault, P. Braud, P. Micheau, P. Szeger, A flowmeter for unsteady liquid flow measurements, Flow Meas. Instrum. 22 (2011) 131-137.   DOI
10 B. Kashi, E. Weinberg, H.D. Haustein, Analytical re-examination of the submerged laminar jet0 s velocity evolution, Phys. Fluids 30 (2018).
11 B.K. Edurne Carpintero-Rogero1, Thomas Sattelmayer, Simultaneous HS-PIV and shadowgraph measurements of gas-liquid flows in a horizontal pipe, in: 13th Int. Symp on Appl. Laser Techniques to Fluid Mechanics, 2006. Lisbon, Portugal.
12 J. Westerweel, Fundamentals of digital particle image velocimetry, Meas. Sci. Technol. 8 (1997) 1379.   DOI
13 F. Pereira, A. Ciarravano, F.D. Felice, G.P. Romano, ADAPTIVE MULTI-FRAME PIV, DOI.
14 S. Sharma, DARTPIV : Dynamic Adaptive Real-Time Particle Image Velocimetry, Massachusetts Institute of Technology, 2013.
15 A. Sciacchitano, Uncertainty Quantification in Particle Image Velocimetry and Advances in Time-Resolved Image and Data Analysis, 2014.
16 H. Martin, Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces, Adv. Heat Tran. 13 (1977) 1-60.   DOI
17 A. Ulas, Passive flow control in liquid-propellant rocket engines with cavitating venturi, Flow Meas. Instrum. 17 (2006) 93-97.   DOI
18 S. Luk, Y.H. Lee, Mass transfer in eddies close to air-water interface, AIChE J. 32 (1986) 1546-1554.   DOI
19 F. Scarano, M.L. Riethmuller, Advances in iterative multigrid PIV image processing, Exp. Fluid 29 (2000) S051-S060.   DOI
20 B. Kashi, H.D. Haustein, M. Transfer, Dependence of submerged jet heat transfer on nozzle length, Int. J. Heat Mass Tran. 121 (2018) 137-152.   DOI
21 R. Andersson, B. Andersson, On the breakup of fluid particles in turbulent flows, AIChE J. 52 (2006) 2020-2030.   DOI
22 J. Lelouvetel, T. Tanaka, Y. Sato, K. Hishida, Transport mechanisms of the turbulent energy cascade in upward/downward bubbly flows, J. Fluid Mech. 741 (2014) 514-542.   DOI
23 A. Sciacchitano, B. Wieneke, F. Scarano, PIV uncertainty quantification by image matching, Meas. Sci. Technol. 24 (2013), 045302.   DOI
24 J. Zhu, H. Xie, K. Feng, X. Zhang, M. Si, Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube, Int. J. Heat Mass Tran. 112 (2017) 544-552.   DOI
25 J. Yin, J. Li, H. Li, W. Liu, D. Wang, Experimental study on the bubble generation characteristics for an venturi type bubble generator, Int. J. Heat Mass Tran. 91 (2015) 218-224.   DOI
26 Y. Liao, D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci. 64 (2009) 3389-3406.   DOI
27 F. Risso, J. Fabre, Oscillations and breakup of a bubble immersed in a turbulent field, J. Fluid Mech. 372 (1998) 323-355.   DOI
28 X. Zhou, B. Doup, X. Sun, Measurements of liquid-phase turbulence in gaseliquid two-phase flows using particle image velocimetry, Meas. Sci. Technol. 24 (2013) 125303.   DOI
29 J. Westerweel, Fundamentals of Digital Particle Image Velocimetry, 1999.
30 R.D. Keane, R.J. Adrian, Theory of cross-correlation analysis of PIV images, Appl. Sci. Res. 49 (1992) 191-215.   DOI
31 H.A. Stone, L.G. Leal, The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers, J. Fluid Mech. 206 (2006) 223-263.   DOI
32 J.M. Davies, J.F. Hutton, K. Walters, A critical re-appraisal of the jet-thrust technique for normal stresses, with particular reference to axial velocity and stress rearrangement at the exit plane, J. Non-newton Fluid Mech. 3 (1977) 141-160, https://doi.org/10.1016/0377-0257(77)80046-3.   DOI
33 H.D. Haustein, R.S. Harnik, W.J.P.o.F. Rohlfs, A Simple Hydrodynamic Model of a Laminar Free-Surface Jet in Horizontal or Vertical Flight, vol. 29, 2017, 082105.
34 R. Andersson, B. Andersson, Modeling the breakup of fluid particles in turbulent flows, AIChE J. 52 (2006) 2031-2038.   DOI
35 D. Bertoldi, C.C.S. Dallalba, J.R. Barbosa, Experimental investigation of two-phase flashing flows of a binary mixture of infinite relative volatility in a Venturi tube, Exp. Therm. Fluid Sci. 64 (2015) 152-163.   DOI