• Title/Summary/Keyword: approximate point spectrum

Search Result 18, Processing Time 0.024 seconds

ON p-HYPONORMAL OPERATORS ON A HILBERT SPACE

  • Cha, Hyung-Koo
    • The Pure and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.109-114
    • /
    • 1998
  • Let H be a separable complex H be a space and let (equation omitted)(H) be the *-algebra of all bounded linear operators on H. An operator T in (equation omitted)(H) is said to be p-hyponormal if ($T^{\ast}T)^p - (TT^{\ast})^{p}\geq$ 0 for 0 < p < 1. If p = 1, T is hyponormal and if p = $\frac{1}{2}$, T is semi-hyponormal. In this paper, by using a technique introduced by S. K. Berberian, we show that the approximate point spectrum $\sigma_{\alpha p}(T) of a pure p-hyponormal operator T is empty, and obtains the compact perturbation of T.

  • PDF

CONTINUITY OF APPROXIMATE POINT SPECTRUM ON THE ALGEBRA B(X)

  • Sanchez-Perales, Salvador;Cruz-Barriguete, Victor A.
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.487-500
    • /
    • 2013
  • In this paper we provide a brief introduction to the continuity of approximate point spectrum on the algebra B(X), using basic properties of Fredholm operators and the SVEP condition. Also, we give an example showing that in general it not holds that if the spectrum is continuous an operator T, then for each ${\lambda}{\in}{\sigma}_{s-F}(T){\setminus}\overline{{\rho}^{\pm}_{s-F}(T)}$ and ${\in}$ > 0, the ball $B({\lambda},{\in})$ contains a component of ${\sigma}_{s-F}(T)$, contrary to what has been announced in [J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity II, Integral Equations Operator Theory 4 (1981), 459-503] page 462.

ON THE SPECTRUM AND FINE SPECTRUM OF THE UPPER TRIANGULAR DOUBLE BAND MATRIX U (a0, a1, a2; b0, b1, b2) OVER THE SEQUENCE SPACE ℓp

  • Nuh Durna;Rabia Kilic
    • Honam Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.598-609
    • /
    • 2023
  • The purpose of this article is to obtain the spectrum, fine spectrum, approximate point spectrum, defect spectrum and compression spectrum of the double band matrix U (a0, a1, a2; b0, b1, b2), b0, b1, b2≠0 on the sequence space ℓp (1 < p < ∞).

ON THE SEMI-HYPONORMAL OPERATORS ON A HILBERT SPACE

  • Cha, Hyung-Koo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.597-602
    • /
    • 1997
  • Let H be a separable complex Hilbert space and L(H) be the *-algebra of all bounded linear operators on H. For $T \in L(H)$, we construct a pair of semi-positive definite operators $$ $\mid$T$\mid$_r = (T^*T)^{\frac{1}{2}} and $\mid$T$\mid$_l = (TT^*)^{\frac{1}{2}}. $$ An operator T is called a semi-hyponormal operator if $$ Q_T = $\mid$T$\mid$_r - $\mid$T$\mid$_l \geq 0. $$ In this paper, by using a technique introduced by Berberian [1], we show that the approximate point spectrum $\sigma_{ap}(T)$ of a semi-hyponomal operator T is empty.

  • PDF

On the Fine Spectrum of the Lower Triangular Matrix B(r, s) over the Hahn Sequence Space

  • Das, Rituparna
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.441-455
    • /
    • 2017
  • In this article we have determined the spectrum and fine spectrum of the lower triangular matrix B(r, s) on the Hahn sequence space h. We have also determined the approximate point spectrum, the defect spectrum and the compression spectrum of the operator B(r, s) on the sequence space h.

CONTROLLABILITY FOR SEMILINEAR CONTROL SYSTEMS WITH ISOLATED SPECTRUM POINTS

  • JEONG JIN-MUN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.557-567
    • /
    • 2006
  • This paper proves the invariability of reachable sets for the linear control system with positive isolated spectrum points in case where the principal operator generates $C_0-semigroup$ and derives the approximate controllability for the semilinear control system by using spectral operators with respect to isolated spectrum points.

A NOTE ON THE ESSENTIAL SPECTRUM OF AN IRREDUCIBLE P-HYPONORMAL OPERATOR

  • Lee, Kwang-Il;Cha, Hyung-Koo
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.87-92
    • /
    • 2001
  • In this paper, we have the extended result of Bunce's theorem. And we show that if T is an irreducible p-hyponormal operator such that T*T-TT* is compact, then ${\sigma}_{ap}(T)={\sigma}_e(T)$ and ${\sigma}_p({\phi}(T))={\sigma}_e({\phi}(T))$.

  • PDF

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.

WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS

  • Cao, Xiaohong
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.771-780
    • /
    • 2008
  • Let $M_C=\(\array{A&C\\0&B}\)$ be a $2{\times}2$ upper triangular operator matrix acting on the Hilbert space $H{\bigoplus}K\;and\;let\;{\sigma}_w(\cdot)$ denote the Weyl spectrum. We give the necessary and sufficient conditions for operators A and B which ${\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w\(\array{A&C\\0&B}\)\;or\;{\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w(A){\cup}{\sigma}_w(B)$ holds for every $C{\in}B(K,\;H)$. We also study the Weyl's theorem for operator matrices.