ON p-HYPONORMAL OPERATORS ON A HILBERT SPACE

  • Published : 1998.11.01

Abstract

Let H be a separable complex H be a space and let (equation omitted)(H) be the *-algebra of all bounded linear operators on H. An operator T in (equation omitted)(H) is said to be p-hyponormal if ($T^{\ast}T)^p - (TT^{\ast})^{p}\geq$ 0 for 0 < p < 1. If p = 1, T is hyponormal and if p = $\frac{1}{2}$, T is semi-hyponormal. In this paper, by using a technique introduced by S. K. Berberian, we show that the approximate point spectrum $\sigma_{\alpha p}(T) of a pure p-hyponormal operator T is empty, and obtains the compact perturbation of T.

Keywords