On the Fine Spectrum of the Lower Triangular Matrix $B(r, s)$ over the Hahn Sequence Space

Rituparna Das
Department of Mathematics, Sikkim Manipal Institute of Technology, Sikkim 737136, India
e-mail: ri2p.das@gmail.com; rituparna.d@smu.smit.edu.in

Abstract. In this article we have determined the spectrum and fine spectrum of the lower triangular matrix $B(r, s)$ on the Hahn sequence space h. We have also determined the approximate point spectrum, the defect spectrum and the compression spectrum of the operator $B(r, s)$ on the sequence space h.

1. Introduction

By w, we denote the space of all real or complex valued sequences. Throughout the paper $c, c_{0}, b v, c s, b s, \ell_{1}, \ell_{\infty}$ represent the spaces of all convergent, null, bounded variation, convergent series, bounded series, absolutely summable and bounded sequences respectively. Also $b v_{0}$ denotes the sequence space $b v \cap c_{0}$.

Fine spectra of various matrix operators on different sequence spaces have been examined by several authors. Fine spectrum of the operator $\Delta_{a, b}$ on the sequence space c was determined by Akhmedov and El-Shabrawy [1]. The fine spectra of the Cesàro operator C_{1} over the sequence space $b v_{p},(1 \leq p<\infty)$ was determined by Akhmedov and Başar [2]. Altay and Başar [3, 4] determined the fine spectrum of the difference operator Δ and the generalized difference operator $B(r, s)$ on the sequence spaces c_{0} and c. The spectrum and fine spectrum of the Zweier Matrix on the sequence spaces ℓ_{1} and $b v$ were studied by Altay and Karakus [5]. Altun $[6,7]$ determined the fine spectra of triangular Toeplitz operators and tridiagonal symmetric matrices over some sequence spaces. Furkan, Bilgiç and Kayaduman [14] have determined the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{1} and $b v$. Fine spectra of operator $B(r, s, t)$ over the sequence spaces ℓ_{1} and $b v$ and generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{p} and $b v_{p},(1 \leq p<\infty)$ were studied by Bilgiç and Furkan [11, 12]. Furkan, Bilgiç and Altay [15] have studied the fine spectrum of operator $B(r, s, t)$ over the sequence

Received January 6, 2017; revised May 28, 2017; accepted June 14, 2017.
2010 Mathematics Subject Classification: 47A10, 47B37.
Key words and phrases: spectrum of an operator, matrix mapping, sequence space.
spaces c_{0} and c. Fine spectrum of the operator $B(r, s, t)$ over the sequence spaces ℓ_{p} and $b v_{p},(1 \leq p<\infty)$ were studied by Furkan, Bilgiç and Başar [16]. The spectrum of the operator $D(r, 0,0, s)$ over the sequence space $b v_{0}$ was investigated by Tripathy and Paul [30]. Tripathy and Paul [29, 31] also determined the spectrum of the operators $D(r, 0,0, s)$ and $D(r, 0, s, 0, t)$ over the sequence spaces ℓ_{p} and $b v_{p}$, $(1 \leq p<\infty)$. Fine spectrum of the generalized difference operator Δ_{v} on the sequence space ℓ_{1} was investigated by Srivastava and Kumar [26]. Panigrahi and Srivastava [23, 24] studied the spectrum and fine spectrum of the second order difference operator $\Delta_{u v}^{2}$ on the sequence space c_{0} and generalized second order forward difference operator $\Delta_{u v w}^{2}$ on the sequence space ℓ_{1}. Fine spectra of upper triangular double-band matrix $U(r, s)$ over the sequence spaces c_{0} and c were studied by Karakaya and Altun [20]. Karaisa and Başar [19] have determined the spectrum and fine spectrum of the upper traiangular matrix $A(r, s, t)$ over the sequence space $\ell_{p},(0<p<\infty)$. Dündar and Başar [13] have studied the fine spectrum of the linear operator Δ^{+}defined by an upper triangle double band matrix acting on the sequence space c_{0} with respect to the Goldberg's classification. Başar, Durna and Yildirim [9] subdivided the spectra for some generalized difference operators over certain sequence spaces. Başar [10] also determined the spectrum and fine spectrum of some particular limitation matrices over some sequence spaces. Tripathy and Das $[27,28]$ have studied the fine spectrum of the matrix operators $B(r, 0, s)$ and $U(r, s)$ over the sequence space $c s$. The fine spectrum of the forward difference operator on the Hahn sequence space h was determined by Yeşilkayagil and Kirişci [33].

The Hahn sequence space is defined as

$$
h=\left\{x=\left(x_{n}\right) \in w: \sum_{k=1}^{\infty} k\left|\Delta x_{k}\right|<\infty \quad \text { and } \quad \lim _{k \rightarrow \infty} x_{k}=0\right\}
$$

where $\Delta x_{k}=x_{k}-x_{k+1}$, for all $k \in \mathbb{N}$. This space was defined and studied to some general properties by Hahn [18]. The norm $\|x\|_{h}=\sum_{k=1}^{\infty} k\left|\Delta x_{k}\right|+\sup _{k}\left|x_{k}\right|$ on the space h was defined by Hahn [18]. Rao ([25], Proposition 2.1) defined a new norm on h given by $\|x\|_{h}=\sum_{k=1}^{\infty} k\left|\Delta x_{k}\right|$. Many other authors also investigated various properties of the Hahn sequence space.

In this paper, we shall determine the spectrum and fine spectrum of the lower triangular matrix $B(r, s)$ on the Hahn sequence space h. Also we determine the approximate point spectrum, the defect spectrum and the compression spectrum of the operator $B(r, s)$ on the sequence space h.

2. Preliminaries and Background

Let X and Y be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator. By $R(T)$, we denote the range of T, i.e.

$$
R(T)=\{y \in Y: y=T x, x \in X\} .
$$

By $B(X)$, we denote the set of all bounded linear operators on X into itself. If $T \in B(X)$, then the adjoint T^{*} of T is a bounded linear operator on the dual X^{*}
of X defined by $\left(T^{*} f\right)(x)=f(T x)$, for all $f \in X^{*}$ and $x \in X$. Let $X \neq\{\theta\}$ be a complex normed linear space, where θ is the zero element and $T: D(T) \rightarrow X$ be a linear operator with domain $D(T) \subseteq X$. With T, we associate the operator

$$
T_{\lambda}=T-\lambda I,
$$

where λ is a complex number and I is the identity operator on $D(T)$. If T_{λ} has an inverse which is linear, we denote it by T_{λ}^{-1}, that is

$$
T_{\lambda}^{-1}=(T-\lambda I)^{-1}
$$

and call it the resolvent operator of T.
A regular value λ of T is a complex number such that
(R1) T_{λ}^{-1} exists,
(R2) T_{λ}^{-1} is bounded
(R3) T_{λ}^{-1} is defined on a set which is dense in X i.e. $\overline{R\left(T_{\lambda}\right)}=X$.
The resolvent set of T, denoted by $\rho(T, X)$, is the set of all regular values λ of T. Its complement $\sigma(T, X)=\mathbb{C} \backslash \rho(T, X)$ in the complex plane \mathbb{C} is called the spectrum of T. Furthermore, the spectrum $\sigma(T, X)$ is partitioned into three disjoint sets as follows:

The point(discrete) spectrum $\sigma_{p}(T, X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_{λ}^{-1} does not exist. Any such $\lambda \in \sigma_{p}(T, X)$ is called an eigenvalue of T.

The continuous spectrum $\sigma_{c}(T, X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_{λ}^{-1} exists and satisfies ($R 3$), but not ($R 2$), that is, T_{λ}^{-1} is unbounded.

The residual spectrum $\sigma_{r}(T, X)$ is the set of all $\lambda \in \mathbb{C}$ such that T_{λ}^{-1} exists (and may be bounded or not), but does not satisfy ($R 3$), that is, the domain of T_{λ}^{-1} is not dense in X.

From Goldberg [17], if X is a Banach space and $T \in B(X)$, then there are three possibilities for $R(T)$ and T^{-1} :
(I) $R(T)=X$,
(II) $R(T) \neq \overline{R(T)}=X$
(III) $\overline{R(T)} \neq X$
and
(1) T^{-1} exists and is continuous,
(2) T^{-1} exists but is discontinuous,
(3) T^{-1} does not exist.

If these possibilities are combined in all possible ways, nine different states are created which may be shown as in Table 1.

	I	II	III
1	$\rho(T, X)$		$\sigma_{r}(T, X)$
2	$\sigma_{c}(T, X)$	$\sigma_{c}(T, X)$	$\sigma_{r}(T, X)$
3	$\sigma_{p}(T, X)$	$\sigma_{p}(T, X)$	$\sigma_{p}(T, X)$

Table 1: Subdivisions of spectrum of a linear operator

These are labeled by: $I_{1}, I_{2}, I_{3}, I I_{1}, I I_{2}, I I_{3}, I I I_{1}, I I I_{2}$ and $I I I_{3}$. If λ is a complex number such that $T_{\lambda} \in I_{1}$ or $T_{\lambda} \in I_{2}$, then λ is in the resolvent set $\rho(T, X)$ of T. The further classification gives rise to the fine spectrum of T. If an operator is in state $I I_{2}$, then $R\left(T_{\lambda}\right) \neq \overline{R\left(T_{\lambda}\right)}=X$ and T_{λ}^{-1} exists but is discontinuous and we write $\lambda \in I I_{2} \sigma(T, X)$. The state $I I_{1}$ is impossible as if T_{λ} is injective, then from Kreyszig [[22], Problem 6, p.290] T_{λ}^{-1} is bounded and hence continuous if and only if $R\left(T_{\lambda}\right)$ is closed.

Again, following Appell et al. [8], we define the three more subdivisions of the spectrum called as the approximate point spectrum, defect spectrum and compression spectrum.

Given a bounded linear operator T in a Banach space X, we call a sequence $\left(x_{k}\right)$ in X as a Weyl sequence for T if $\left\|x_{k}\right\|=1$ and $\left\|T x_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$.

The approximate point spectrum of T, denoted by $\sigma_{a p}(T, X)$, is defined as the set

$$
\begin{equation*}
\sigma_{a p}(T, X)=\{\lambda \in \mathbb{C}: \text { there exists a Weyl sequence for } T-\lambda I\} \tag{2.1}
\end{equation*}
$$

The defect spectrum of T, denoted by $\sigma_{\delta}(T, X)$, is defined as the set

$$
\begin{equation*}
\sigma_{\delta}(T, X)=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not surjective }\} \tag{2.2}
\end{equation*}
$$

The two subspectra given by the relations (2.1) and (2.2) form a (not necessarily disjoint) subdivisions

$$
\begin{equation*}
\sigma(T, X)=\sigma_{a p}(T, X) \cup \sigma_{\delta}(T, X) \tag{2.3}
\end{equation*}
$$

of the spectrum. There is another subspectrum

$$
\sigma_{c o}(T, X)=\{\lambda \in \mathbb{C}: \overline{R(T-\lambda I)} \neq X\}
$$

which is often called the compression spectrum of T. The compression spectrum gives rise to another (not necessarily disjoint) decomposition

$$
\begin{equation*}
\sigma(T, X)=\sigma_{a p}(T, X) \cup \sigma_{c o}(T, X) \tag{2.4}
\end{equation*}
$$

Clearly, $\sigma_{p}(T, X) \subseteq \sigma_{a p}(T, X)$ and $\sigma_{c o}(T, X) \subseteq \sigma_{\delta}(T, X)$. Moreover, it is easy to verify that

$$
\begin{gather*}
\sigma_{r}(T, X)=\sigma_{c o}(T, X) \backslash \sigma_{p}(T, X) \quad \text { and } \tag{2.5}\\
\sigma_{c}(T, X)=\sigma(T, X) \backslash\left[\sigma_{p}(T, X) \cup \sigma_{c o}(T, X)\right] \tag{2.6}
\end{gather*}
$$

By the definitions given above, we can illustrate the subdivisions of spectrum of a bounded linear operator in Table 2.

		1	2	3
		T_{λ}^{-1} exists and is bounded	T_{λ}^{-1} exists and is not bounded	T_{λ}^{-1} does not exist
I	$R\left(T_{\lambda}\right)=X$	$\lambda \in \rho(T, X)$	\cdots	$\lambda \in \sigma_{p}(T, X)$
				$\lambda \in \sigma_{a p}(T, X)$
II	$\overline{R\left(T_{\lambda}\right)}=X$	$\lambda \in \rho(T, X)$	$\lambda \in \sigma_{c}(T, X)$	$\lambda \in \sigma_{p}(T, X)$
			$\lambda \in \sigma_{a p}(T, X)$	$\lambda \in \sigma_{a p}(T, X)$
		$\lambda \in \sigma_{\delta}(T, X)$	$\lambda \in \sigma_{\delta}(T, X)$	
III	$\overline{R\left(T_{\lambda}\right)} \neq X$	$\lambda \in \sigma_{r}(T, X)$	$\lambda \in \sigma_{r}(T, X)$	$\lambda \in \sigma_{p}(T, X)$
		$\lambda \in \sigma_{\delta}(T, X)$	$\lambda \in \sigma_{a p}(T, X)$	$\lambda \in \sigma_{a p}(T, X)$
		$\lambda \in \sigma_{c o}(T, X)$	$\lambda \in \sigma_{\delta}(T, X)$	$\lambda \in \sigma_{\delta}(T, X)$
		$\lambda \in \sigma_{c o}(T, X)$	$\lambda \in \sigma_{c o}(T, X)$	

Table 2: Subdivisions of spectrum of a linear operator
Proposition 2.1.(Appell et al. [8], Proposition 1.3, p. 28) Spectra and subspectra of an operator $T \in B(X)$ and its adjoint $T^{*} \in B\left(X^{*}\right)$ are related by the following relations:
(a) $\sigma\left(T^{*}, X^{*}\right)=\sigma(T, X)$.
(b) $\sigma_{c}\left(T^{*}, X^{*}\right) \subseteq \sigma_{a p}(T, X)$.
(c) $\sigma_{a p}\left(T^{*}, X^{*}\right)=\sigma_{\delta}(T, X)$.
(d) $\sigma_{\delta}\left(T^{*}, X^{*}\right)=\sigma_{a p}(T, X)$.
(e) $\sigma_{p}\left(T^{*}, X^{*}\right)=\sigma_{c o}(T, X)$.
(f) $\sigma_{c o}\left(T^{*}, X^{*}\right) \supseteq \sigma_{p}(T, X)$.
(g) $\sigma(T, X)=\sigma_{a p}(T, X) \cup \sigma_{p}\left(T^{*}, X^{*}\right)=\sigma_{p}(T, X) \cup \sigma_{a p}\left(T^{*}, X^{*}\right)$.

The relations (c)-(f) show that the approximate point spectrum is in a certain sense dual to defect spectrum, and the point spectrum dual to the compression spectrum. Part (g) of Proposition 2.1 implies, in particular, that $\sigma(T, X)=\sigma_{a p}(T, X)$ if X is a Hilbert space and T is normal. Roughly speaking, this shows that normal (in particular, self-adjoint) operators on Hilbert spaces are most similar to matrices in finite dimensional spaces (Appell et al. [8]).

Let E and F be two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from E into F, and we denote it by $A: E \rightarrow F$, if for every sequence $x=\left(x_{k}\right) \in E$, the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x, is in F, where

$$
\begin{equation*}
(A x)_{n}=\sum_{k=1}^{\infty} a_{n k} x_{k}, \quad n \in \mathbb{N} \tag{2.7}
\end{equation*}
$$

By $(E: F)$, we denote the class of all matrices such that $A: E \rightarrow F$. Thus, $A \in(E: F)$ if and only if the series on the right hand side of (2.7) converges for each $n \in \mathbb{N}$ and every $x \in E$ and we have $A x=\left\{(A x)_{n}\right\}_{n \in \mathbb{N}} \in F$ for all $x \in E$.

The matrix $B(r, s)$ is an infinite lower triangular matrix of the form

$$
B(r, s)=\left(\begin{array}{ccccc}
r & 0 & 0 & 0 & \cdots \\
s & r & 0 & 0 & \cdots \\
0 & s & r & 0 & \cdots \\
0 & 0 & s & r & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where $s \neq 0$.
The following results will be used in order to establish the results of this article.

Lemma 2.1.(Kirişci [21], Theorem 3.5) The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B(h)$ from h to itself if and only if:
(i) $\sum_{n=1}^{\infty} n\left|\left(a_{n k}-a_{n+1, k}\right)\right|$ converges, for each k,
(ii) $\sup _{k} \frac{1}{k} \sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(a_{n v}-a_{n+1, v}\right)\right|<\infty$,
(iii) $\lim _{n \rightarrow \infty} a_{n k}=0$, for each k.

Lemma 2.2.(Goldberg [17], Page 59) T has a dense range if and only if T^{*} is one to one.

Lemma 2.3.(Goldberg [17], Page 60) T has a bounded inverse if and only if T^{*} is onto.
3. Spectrum and Fine Spectrum of the Operator $B(r, s)$ over the Sequence Space h

Theorem 3.1. $B(r, s): h \rightarrow h$ is a bounded linear operator and

$$
\|B(r, s)\|_{(h: h)} \leq|r|+|s| .
$$

Proof. From Lemma 2.1, $B(r, s): h \rightarrow h$ is a bounded linear operator on h if
(i) $\sum_{n=1}^{\infty} n\left|\left(a_{n k}-a_{n+1, k}\right)\right|$ converges, for each k,
(ii) $\sup _{k} \frac{1}{k} \sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(a_{n v}-a_{n+1, v}\right)\right|<\infty$,
(iii) $\lim _{n \rightarrow \infty} a_{n k}=0$, for each k,
where

$$
B(r, s)=\left(a_{n k}\right)=\left(\begin{array}{ccccc}
r & 0 & 0 & 0 & \cdots \\
s & r & 0 & 0 & \cdots \\
0 & s & r & 0 & \cdots \\
0 & 0 & s & r & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

For each k, it is clear that $\lim _{n \rightarrow \infty} a_{n k}=0$. Also for each $k, \sum_{n=1}^{\infty} n\left|\left(a_{n k}-a_{n+1, k}\right)\right|$ is finite and so is convergent. It is easy to show that, for each k

$$
\frac{1}{k} \sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(a_{n v}-a_{n+1, v}\right)\right| \leq|r|+\left(1+\frac{2}{k}\right)|s|
$$

and so

$$
\sup _{k} \frac{1}{k} \sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(a_{n v}-a_{n+1, v}\right)\right| \leq|r|+3|s|<\infty
$$

Now,

$$
\begin{aligned}
\|B(r, s)(x)\|_{h} & =\sum_{k=1}^{\infty} k\left|\left(s x_{k}+r x_{k+1}\right)-\left(s x_{k+1}+r x_{k+2}\right)\right| \\
& =\sum_{k=1}^{\infty} k\left|s\left(x_{k}-x_{k+1}\right)+r\left(x_{k+1}-x_{k+2}\right)\right| \\
& \leq|s| \sum_{k=1}^{\infty} k\left|\left(x_{k}-x_{k+1}\right)\right|+|r| \sum_{k=1}^{\infty} k\left|\left(x_{k+1}-x_{k+2}\right)\right| \\
& \leq(|s|+|r|)\|x\|_{h}
\end{aligned}
$$

and hence, $\|B(r, s)\|_{(h: h)} \leq|r|+|s|$. Hence the result.
Theorem 3.2. The spectrum of the operator $B(r, s)$ over h is given by

$$
\sigma(B(r, s), h)=\{\alpha \in \mathbb{C}:|\alpha-r| \leq|s|\} .
$$

Proof. We prove this theorem by showing that $(B(r, s)-\alpha I)^{-1}$ exists and is in ($h: h$) for $|\alpha-r|>|s|$, and then show that the operator $B(r, s)-\alpha I$ is not invertible for $|\alpha-r| \leq|s|$.

Let α be such that $|\alpha-r|>|s|$. Since $s \neq 0$ we have $\alpha \neq r$ and so $B(r, s)-\alpha I$ is a triangle, therefore $(B(r, s)-\alpha I)^{-1}$ exists. Let $y=\left(y_{n}\right) \in h$. On solving $(B(r, s)-\alpha I) x=y$ for x in terms of y we get

$$
\begin{aligned}
(B(r, s)-\alpha I)^{-1} & =\left(b_{n k}\right) \\
& =\left(\begin{array}{ccccc}
\frac{1}{r-\alpha} & 0 & 0 & 0 & \cdots \\
-\frac{s}{(r-\alpha)^{2}} & \frac{1}{r-\alpha} & 0 & 0 & \cdots \\
\frac{s^{2}}{(r-\alpha)^{3}} & -\frac{s}{(r-\alpha)^{2}} & \frac{1}{r-\alpha} & 0 & \cdots \\
-\frac{s^{3}}{(r-\alpha)^{4}} & \frac{s^{2}}{(r-\alpha)^{3}} & -\frac{s}{(r-\alpha)^{2}} & \frac{1}{r-\alpha} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
\end{aligned}
$$

From Lemma 2.1, $(B(r, s)-\alpha I)^{-1}$ will be a bounded linear operator on h if
(i) $\sum_{n=1}^{\infty} n\left|\left(b_{n k}-b_{n+1, k}\right)\right|$ converges, for each k,
(ii) $\sup _{k} \frac{1}{k} \sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(b_{n v}-b_{n+1, v}\right)\right|<\infty$,
(iii) $\lim _{n \rightarrow \infty} b_{n k}=0$, for each k.

For each k, we get

$$
b_{n k}=\frac{(-s)^{n-k}}{(r-\alpha)^{n-k+1}}=\frac{1}{r-\alpha}\left(\frac{-s}{r-\alpha}\right)^{n-k}
$$

Since $|\alpha-r|>|s|$, so for each $k, \lim _{n \rightarrow \infty} b_{n k}=0$. For each k, it is easy to show that
$\sum_{n=1}^{\infty} n\left|\left(b_{n k}-b_{n+1, k}\right)\right| \leq(2 k-1) \frac{1}{|r-\alpha|}+(2 k+1) \frac{|s|}{|r-\alpha|^{2}}+(2 k+3) \frac{|s|^{2}}{|r-\alpha|^{3}}+\cdots$
Now for a fixed k, considering $2 k-1=a$, from above we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} n\left|\left(b_{n k}-b_{n+1, k}\right)\right| \leq & a \frac{1}{|r-\alpha|}+(a+2) \frac{|s|}{|r-\alpha|^{2}}+(a+4) \frac{|s|^{2}}{|r-\alpha|^{3}}+\cdots \\
= & \frac{a}{|r-\alpha|}\left(1+\frac{|s|}{|r-\alpha|}+\frac{|s|^{2}}{|r-\alpha|^{2}}+\cdots\right)+ \\
& \frac{2}{|r-\alpha|}\left(\frac{|s|}{|r-\alpha|}+\frac{2|s|^{2}}{|r-\alpha|^{2}}+\frac{3|s|^{3}}{|r-\alpha|^{3}}+\cdots\right)
\end{aligned}
$$

Since $|\alpha-r|>|s|$, therefore the two series

$$
1+\frac{|s|}{|r-\alpha|}+\frac{|s|^{2}}{|r-\alpha|^{2}}+\cdots \quad \text { and } \quad \frac{|s|}{|r-\alpha|}+\frac{2|s|^{2}}{|r-\alpha|^{2}}+\frac{3|s|^{3}}{|r-\alpha|^{3}}+\cdots
$$

are convergent and converge to $\frac{1}{1-\frac{|s|}{|r-\alpha|}}$ and $\frac{\frac{|s|}{|r-\alpha|}}{\left(1-\frac{|s|}{|r-\alpha|}\right)^{2}}$ respectively. Therefore, $\sum_{n=1}^{\infty} n\left|\left(b_{n k}-b_{n+1, k}\right)\right|$ converges, for each k. Also, for each k, it is easy to show that

$$
\begin{aligned}
\frac{1}{k} \sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(b_{n v}-b_{n+1, v}\right)\right| & \leq \frac{1}{|r-\alpha|}+\left(1+\frac{2}{k}\right) \frac{|s|}{|r-\alpha|^{2}}+\left(1+\frac{4}{k}\right) \frac{|s|^{2}}{|r-\alpha|^{3}}+\cdots \\
& \leq \frac{1}{|r-\alpha|}+3 \frac{|s|}{|r-\alpha|^{2}}+5 \frac{|s|^{2}}{|r-\alpha|^{3}}+\cdots
\end{aligned}
$$

Since $|\alpha-r|>|s|$, so by D'Alembert's ratio test it is easy to show that the series $\frac{1}{|r-\alpha|}+3 \frac{|s|}{|r-\alpha|^{2}}+5 \frac{|s|^{2}}{|r-\alpha|^{3}}+\cdots$ is convergent and therefore we have,

$$
\sup _{k} \frac{1}{k} \sum_{n=1}^{\infty} n\left|\sum_{v=1}^{k}\left(b_{n v}-b_{n+1, v}\right)\right|<\infty
$$

So, by Lemma 2.1, $(B(r, s)-\alpha I)^{-1}$ is in $(h: h)$. This shows that $\sigma(B(r, s), h) \subseteq$ $\{\alpha \in \mathbb{C}:|\alpha-r| \leq|s|\}$.

Now, let $\alpha \in \mathbb{C}$ be such that $|\alpha-r| \leq|s|$. If $\alpha \neq r$, then $B(r, s)-\alpha I$ is a triangle and hence, $(B(r, s)-\alpha I)^{-1}$ exists. Let $y=(1,0,0,0, \ldots)$. Then $y \in h$. Now, $(B(r, s)-\alpha I)^{-1} y=x$ gives

$$
x_{n}=\frac{(-s)^{n-1}}{(r-\alpha)^{n}}
$$

Since $|\alpha-r| \leq|s|$, so the sequence $\left(x_{n}\right)$ does not converge to 0 and so, $x=\left(x_{n}\right) \notin h$. Therefore, $(B(r, s)-\alpha I)^{-1}$ is not in $(h: h)$ and so $\alpha \in \sigma(B(r, s), h)$. If $\alpha=r$, then the operator $B(r, s)-\alpha I$ is represented by the matrix

$$
B(r, s)-\alpha I=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \cdots \\
s & 0 & 0 & 0 & \cdots \\
0 & s & 0 & 0 & \cdots \\
0 & 0 & s & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Since, the range of $B(r, s)-\alpha I$ is not dense, so $\alpha \in \sigma(B(r, s), h)$. Hence,

$$
\{\alpha \in \mathbb{C}:|\alpha-r| \leq|s|\} \subseteq \sigma(B(r, s), h)
$$

This completes the proof.
Theorem 3.3. The point spectrum of the operator $B(r, s)$ over h is given by

$$
\sigma_{p}(B(r, s), h)=\emptyset .
$$

Proof. Let α be an eigenvalue of the operator $B(r, s)$. Then there exists $x \neq \theta=$ $(0,0,0, \ldots)$ in h such that $B(r, s) x=\alpha x$. Then, we have

$$
\left.\begin{array}{rl}
r x_{1} & =\alpha x_{1} \\
s x_{1}+r x_{2} & =\alpha x_{2} \\
s x_{2}+r x_{3} & =\alpha x_{3} \\
\vdots & \\
s x_{n}+r x_{n+1} & =\alpha x_{n+1}
\end{array}\right\}
$$

where $n \geq 1$. If x_{k} is the first non-zero entry of the sequence $\left(x_{n}\right)$, then $\alpha=r$. Then from the relation $s x_{k}+r x_{k+1}=\alpha x_{k+1}$, we have $s x_{k}=0$. But $s \neq 0$ and hence, $x_{k}=0$, a contradiction. Hence, $\sigma_{p}(B(r, s), h)=\emptyset$.

If $T: h \rightarrow h$ is a bounded linear operator represented by a matrix A, then it is known that the adjoint operator $T^{*}: h^{*} \rightarrow h^{*}$ is defined by the transpose A^{t} of the matrix A. It should be noted that the dual space h^{*} of h is isometrically isomorphic to the Banach space $\sigma_{\infty}=\left\{x=\left(x_{k}\right) \in w: \sup _{n} \frac{1}{n}\left|\sum_{k=1}^{n} x_{k}\right|<\infty\right\}$.

Theorem 3.4. The point spectrum of the operator $B(r, s)^{*}$ over h^{*} is given by

$$
\sigma_{p}\left(B(r, s)^{*}, h^{*} \cong \sigma_{\infty}\right)=\{\alpha \in \mathbb{C}:|\alpha-r|<|s|\} .
$$

Proof. Let α be an eigenvalue of the operator $B(r, s)^{*}$. Then there exists $x \neq \theta=$ $(0,0,0, \ldots)$ in σ_{∞} such that $B(r, s)^{*} x=\alpha x$. Then, we have

$$
\left.\begin{array}{rl}
B(r, s)^{t} x & =\alpha x \\
\Rightarrow r x_{1}+s x_{2} & =\alpha x_{1} \\
r x_{2}+s x_{3} & =\alpha x_{2} \\
\vdots & \\
r x_{n}+s x_{n+1} & =\alpha x_{n}
\end{array}\right\},
$$

where $n \geq 1$. Solving, we get

$$
x_{n}=\left(\frac{\alpha-r}{s}\right)^{n-1} x_{1}, \quad n \geq 1
$$

and so, $\sup _{n} \frac{1}{n}\left|\sum_{k=1}^{n} x_{k}\right|<\infty$ if and only if $|\alpha-r|<|s|$. Hence, $\sigma_{p}\left(B(r, s)^{*}, h^{*} \cong\right.$ $\left.\sigma_{\infty}\right)=\{\alpha \in \mathbb{C}:|\alpha-r|<|s|\}$.
Theorem 3.5. The residual spectrum of the operator $B(r, s)$ over h is given by

$$
\sigma_{r}(B(r, s), h)=\{\alpha \in \mathbb{C}:|\alpha-r|<|s|\} .
$$

Proof. From part (e) of Propostion 2.1 and relation (2.5), we get

$$
\sigma_{r}(B(r, s), h)=\sigma_{p}\left(B(r, s)^{*}, h^{*}\right) \backslash \sigma_{p}(B(r, s), h)
$$

So we get the required result by using Theorem 3.3 and Theorem 3.4.
Theorem 3.6. The continuous spectrum of the operator $B(r, s)$ over h is given by

$$
\sigma_{c}(B(r, s), h)=\{\alpha \in \mathbb{C}:|\alpha-r|=|s|\} .
$$

Proof. Since, $\sigma(B(r, s), h)$ is the disjoint union of $\sigma_{p}(B(r, s), h), \sigma_{r}(B(r, s), h)$ and $\sigma_{c}(B(r, s), h)$, therefore, by Theorem 3.2, Theorem 3.3 and Theorem 3.5, we get $\sigma_{c}(B(r, s), h)=\{\alpha \in \mathbb{C}:|\alpha-r|=|s|\}$.
Theorem 3.7. If $\alpha=r$, then $\alpha \in I I I_{1} \sigma(B(r, s), h)$.
Proof. If $\alpha=r$, the range of $B(r, s)-\alpha I$ is not dense. So, from Table 2 and Theorem 3.3, we have $\alpha \in \sigma_{r}(B(r, s), h)$. From Table 2,

$$
\sigma_{r}(B(r, s), h)=I I I_{1} \sigma(B(r, s), h) \cup I I I_{2} \sigma(B(r, s), h)
$$

Therefore, $\alpha \in I I I_{1} \sigma(B(r, s), h)$ or $\alpha \in I I I_{2} \sigma(B(r, s), h)$. Also for $\alpha=r$,

$$
B(r, s)-\alpha I=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \cdots \\
s & 0 & 0 & 0 & \cdots \\
0 & s & 0 & 0 & \cdots \\
0 & 0 & s & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

It is easy to show that the operator $(B(r, s)-\alpha I)^{*}: \sigma_{\infty} \rightarrow \sigma_{\infty}$ is onto. So by Lemma 2.3 we get the operator $B(r, s)-\alpha I$ has a bounded inverse. This completes the theorem.

Theorem 3.8. If $\alpha \neq r$ and $\alpha \in \sigma_{r}(B(r, s), h)$, then $\alpha \in I I I_{2} \sigma(B(r, s), h)$.
Proof. Let $\alpha \neq r$. Since, $\alpha \in \sigma_{r}(B(r, s), h)$, therefore, from Table 2,

$$
\alpha \in I I I_{1} \sigma(B(r, s), h) \quad \text { or } \quad \alpha \in I I I_{2} \sigma(B(r, s), h)
$$

Now, $\alpha \in \sigma_{r}(B(r, s), h)$ implies that $|\alpha-r|<|s|$. Therefore, for each k, the sequence $\left(b_{n k}\right)_{n}$ in Theorem 3.2 does not converge to 0 as $n \rightarrow \infty$ and hence, the operator $B(r, s)-\alpha I$ has no bounded inverse. Therefore, $\alpha \in I I I_{2} \sigma(B(r, s), h)$.

Theorem 3.9. If $\alpha \in \sigma_{c}(B(r, s), h)$, then $\alpha \in I I_{2} \sigma(B(r, s), h)$.
Proof. If $\alpha \in \sigma_{c}(B(r, s), h)$, then $|\alpha-r|=|s|$. Therefore, for each k, the sequence $\left(b_{n k}\right)_{n}$ in Theorem 3.2 does not converge to 0 as $n \rightarrow \infty$ and hence, the operator $B(r, s)-\alpha I$ has no bounded inverse. So, α satisfies Goldberg's condition 2.

Now we shall show that the operator $B(r, s)-\alpha I$ is not onto. Let $y=\left(y_{n}\right)=$ $(1,0,0,0, \ldots)$. Clearly, $\left(y_{n}\right) \in h$. Let $x=\left(x_{n}\right)$ be a sequence such that $(B(r, s)-$ $\alpha I) x=y$. On solving, we get

$$
x_{n}=\frac{(-s)^{n-1}}{(r-\alpha)^{n}}
$$

Since, $|\alpha-r|=|s|$ so the sequence $\left\{x_{n}\right\}$ does not converge to 0 as $n \rightarrow \infty$ and so, $x=\left(x_{n}\right) \notin h$. Hence the operator $B(r, s)-\alpha I$ is not onto. So, α satisfies Goldberg's condition $I I$. This completes the proof.

Theorem 3.10. The approximate point spectrum of the operator $B(r, s)$ over h is given by

$$
\sigma_{a p}(B(r, s), h)=\{\alpha \in \mathbb{C}:|\alpha-r| \leq|s|\} \backslash\{r\} .
$$

Proof. From Table 2,

$$
\sigma_{a p}(B(r, s), h)=\sigma(B(r, s), h) \backslash I I I_{1} \sigma(B(r, s), h)
$$

By Theorem 3.7, $I I I_{1} \sigma(B(r, s), h)=\{r\}$.This completes the proof.
Theorem 3.11. The compression spectrum of the operator $B(r, s)$ over h is given by

$$
\sigma_{c o}(B(r, s), h)=\{\alpha \in \mathbb{C}:|\alpha-r|<|s|\} .
$$

Proof. From part (e) of Proposition 2.1, we get

$$
\sigma_{p}\left(B(r, s)^{*}, h^{*}\right)=\sigma_{c o}(B(r, s), h) .
$$

Using Theorem 3.4, we get the required result.
Theorem 3.12. The defect spectrum of the operator $B(r, s)$ over h is given by

$$
\sigma_{\delta}(B(r, s), h)=\{\alpha \in \mathbb{C}:|\alpha-r| \leq|s|\} .
$$

Proof. From Table 2, we have

$$
\sigma_{\delta}(B(r, s), h)=\sigma(B(r, s), h) \backslash I_{3} \sigma(B(r, s), h)
$$

Also,

$$
\sigma_{p}(B(r, s), h)=I_{3} \sigma(B(r, s), h) \cup I I_{3} \sigma(B(r, s), h) \cup I I I_{3} \sigma(B(r, s), h)
$$

By Theorem 3.3, we have $\sigma_{p}(B(r, s), h)=\emptyset$ and so $I_{3} \sigma(B(r, s), h)=\emptyset$. Hence, $\sigma_{\delta}(B(r, s), h)=\{\alpha \in \mathbb{C}:|\alpha-r| \leq|s|\}$.

Theorem 3.13. The following statements hold:
(i) $\sigma_{a p}\left(B(r, s)^{*}, h^{*} \cong \sigma_{\infty}\right)=\{\alpha \in \mathbb{C}:|\alpha-r| \leq|s|\}$.
(ii) $\sigma_{\delta}\left(B(r, s)^{*}, h^{*} \cong \sigma_{\infty}\right)=\{\alpha \in \mathbb{C}:|\alpha-r| \leq|s|\} \backslash\{r\}$.

Proof. From parts (c) and (d) of Proposition 2.1, we get

$$
\sigma_{a p}\left(B(r, s)^{*}, h^{*} \cong \sigma_{\infty}\right)=\sigma_{\delta}(B(r, s), h)
$$

and

$$
\sigma_{\delta}\left(B(r, s)^{*}, h^{*} \cong \sigma_{\infty}\right)=\sigma_{a p}(B(r, s), h)
$$

Using Theorem 3.10 and Theorem 3.12, we get the required results.

References

[1] A. M. Akhmedov and S. R. El-Shabrawy, On the fine spectrum of the operator $\Delta_{a, b}$ over the sequence space c, Comput. Math. Appl., 61(10)(2011), 2994-3002.
[2] A. M. Akhmedov and F. Başar, The fine spectra of the Cesàro operator C_{1} over the sequence space $b v_{p}(1 \leq p<\infty)$, Math. J. Okayama Univ., $\mathbf{5 0}(2008), 135-147$.
[3] B. Altay and F. Başar, On the fine spectrum of the difference operator Δ on c_{0} and c, Inform. Sci., 168(2004), 217-224.
[4] B. Altay and F. Başar, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces c_{0} and c, Int. J. Math. Math. Sci., 2005(18)(2005), 3005-3013.
[5] B. Altay and M. Karakus, On the spectrum and the fine spectrum of the Zweier matrix as an operator on some sequence spaces, Thai J. Math., 3(2)(2005), 153-162.
[6] M. Altun, On the fine spectra of triangular Toeplitz operators, Appl. Math. Comput., 217(2011), 8044-8051.
[7] M. Altun, Fine spectra of tridiagonal symmetric matrices, Int. J. Math. Math. Sci., 2011, Article ID 161209, 10 pp.
[8] J. Appell, E. Pascale and A. Vignoli, Nonlinear spectral theory, Walter de Gruyter, Berlin, New York, 2004.
[9] F. Başar, N. Durna and M. Yildirim, Subdivisions of the spectra for generalized difference operator over certain sequence spaces, Thai J. Math., 9(2)(2011), 279-289.
[10] F. Başar, Summability theory and its applications, Bentham Science Publishers, ebooks, Monographs, Istanbul, 2012.
[11] H. Bilgiç and H.Furkan, On the fine spectrum of operator $B(r, s, t)$ over the sequence spaces ℓ_{1} and $b v$, Math. Comput. Modelling, 45(2007), 883-891.
[12] H. Bilgiç and H.Furkan, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{1} and $b v_{p}(1 \leq p<\infty)$, Nonlinear Anal., 68(2008), 499-506.
[13] E. Dündar and F. Başar, On the fine spectrum of the upper triangle double band matrix Δ^{+}on the sequence space c_{0}, Math. Commun., 18(2013), 337-348.
[14] H. Furkan, H.Bilgiç and K.Kayaduman, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{1} and $b v$, Hokkaido Math. J., 35(2006), 893-904.
[15] H. Furkan, H. Bilgiç and B. Altay, On the fine spectrum of operator $B(r, s, t)$ over c_{0} and c, Comput. Math. Appl., 53(2007), 989-998.
[16] H. Furkan, H. Bilgiç and F. Başar, On the fine spectrum of operator $B(r, s, t)$ over the sequence spaces ℓ_{p} and $b v_{p},(1 \leq p<\infty)$, Comput. Math. Appl., 60(2010), 2141-2152.
[17] S. Goldberg, Unbounded linear operators: theory and applications, McGraw-Hill Book co., New York-Tronto, 1966.
[18] H. Hahn, Über folgen linearer operationen, Monatsh. Math. Phys., 32(1)(1922), 3-88.
[19] A. Karaisa and F. Başar, Fine spectra of upper triangular triple-band matrices over the sequence space $\ell_{p}(0<p<\infty)$, Abstr. Appl. Anal., 2013, Article ID 342682, 10 pp.
[20] V. Karakaya and M. Altun, Fine spectra of upper triangular double-band matrices, J. Comput. Appl. Math., 234(2010), 1387-1394.
[21] M. Kirişci, A survey on Hahn sequence space, Gen. Math. Notes, 19(2)(2013), 37-58.
[22] E. Kreyszig, Introductory functional analysis with application, John Wiley and Sons, 1989.
[23] B. L. Panigrahi and P. D. Srivastava, Spectrum and fine spectrum of generalised second order difference operator $\Delta_{u v}^{2}$ on sequence space c_{0}, Thai J. Math., $\mathbf{9}(\mathbf{1})(2011), 57-74$.
[24] B. L. Panigrahi and P. D. Srivastava, Spectrum and fine spectrum of generalized second order forward difference operator $\Delta_{u v w}^{2}$ on sequence space ℓ_{1}, Demonstratio Math., 45(3)(2012), 593-609.
[25] W.C. Rao, The Hahn sequence space, Bull. Calcutta Math. Soc., 82(1990), 72-78.
[26] P. D. Srivastava and S. Kumar, Fine spectrum of the generalized difference operator Δ_{v} on sequence space ℓ_{1}, Thai J. Math., 8(2)(2010), 221-233.
[27] B. C. Tripathy and R. Das, Spectrum and fine spectrum of the lower triangular matrix $B(r, 0, s)$ over the sequence space cs, Appl. Math. Inf. Sci., 9(4)(2015), 2139-2145.
[28] B. C. Tripathy and R. Das, Spectrum and fine spectrum of the upper triangular matrix $U(r, s)$ over the sequence space cs, Proyecciones J. Math., 34(2)(2015), 107-125.
[29] B. C. Tripathy and A. Paul, The spectrum of the operator $D(r, 0,0, s)$ over the sequence spaces ℓ_{p} and $b v_{p}$, Hacet. J. Math. Stat., 43(3)(2014), 425-434.
[30] B. C. Tripathy and A. Paul, The Spectrum of the operator $D(r, 0,0, s)$ over the sequence space $b v_{0}$, Georgian Math. J., 22(3)(2015), 421-426.
[31] B. C. Tripathy and A. Paul, The spectrum of the operator $D(r, 0, s, 0, t)$ over the sequence spaces ℓ_{p} and $b v_{p},(1 \leq p<\infty)$, Afrika Mat., 26(5-6)(2015), 1137-1151.
[32] A. Wilansky, Summability through functional analysis, North Holland, 1984.
[33] M. Yeşilkayagil and M. Kirişci, On the fine spectrum of the forward difference operator on the Hahn space, Gen. Math. Notes, 33(2)(2016), 1-16.

