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Abstract. In this article we have determined the spectrum and fine spectrum of the

lower triangular matrix B(r, s) on the Hahn sequence space h. We have also determined

the approximate point spectrum, the defect spectrum and the compression spectrum of

the operator B(r, s) on the sequence space h.

1. Introduction

By w, we denote the space of all real or complex valued sequences. Throughout
the paper c, c0, bv, cs, bs, ℓ1, ℓ∞ represent the spaces of all convergent, null, bounded
variation, convergent series, bounded series, absolutely summable and bounded se-
quences respectively. Also bv0 denotes the sequence space bv ∩ c0.

Fine spectra of various matrix operators on different sequence spaces have been
examined by several authors. Fine spectrum of the operator ∆a,b on the sequence
space c was determined by Akhmedov and El-Shabrawy [1]. The fine spectra of
the Cesàro operator C1 over the sequence space bvp, (1 ≤ p < ∞) was determined
by Akhmedov and Başar [2]. Altay and Başar [3, 4] determined the fine spectrum
of the difference operator ∆ and the generalized difference operator B(r, s) on the
sequence spaces c0 and c. The spectrum and fine spectrum of the Zweier Matrix
on the sequence spaces ℓ1 and bv were studied by Altay and Karakuş [5]. Altun
[6, 7] determined the fine spectra of triangular Toeplitz operators and tridiagonal
symmetric matrices over some sequence spaces. Furkan, Bilgiç and Kayaduman [14]
have determined the fine spectrum of the generalized difference operator B(r, s) over
the sequence spaces ℓ1 and bv. Fine spectra of operator B(r, s, t) over the sequence
spaces ℓ1 and bv and generalized difference operator B(r, s) over the sequence spaces
ℓp and bvp, (1 ≤ p < ∞) were studied by Bilgiç and Furkan [11, 12]. Furkan, Bilgiç
and Altay [15] have studied the fine spectrum of operator B(r, s, t) over the sequence

Received January 6, 2017; revised May 28, 2017; accepted June 14, 2017.
2010 Mathematics Subject Classification: 47A10, 47B37.
Key words and phrases: spectrum of an operator, matrix mapping, sequence space.

441



442 Rituparna Das

spaces c0 and c. Fine spectrum of the operator B(r, s, t) over the sequence spaces
ℓp and bvp, (1 ≤ p < ∞) were studied by Furkan, Bilgiç and Başar [16]. The
spectrum of the operator D(r, 0, 0, s) over the sequence space bv0 was investigated
by Tripathy and Paul [30]. Tripathy and Paul [29, 31] also determined the spectrum
of the operators D(r, 0, 0, s) and D(r, 0, s, 0, t) over the sequence spaces ℓp and bvp,
(1 ≤ p < ∞). Fine spectrum of the generalized difference operator ∆v on the
sequence space ℓ1 was investigated by Srivastava and Kumar [26]. Panigrahi and
Srivastava [23, 24] studied the spectrum and fine spectrum of the second order
difference operator ∆2

uv on the sequence space c0 and generalized second order
forward difference operator ∆2

uvw on the sequence space ℓ1. Fine spectra of upper
triangular double-band matrix U(r, s) over the sequence spaces c0 and c were studied
by Karakaya and Altun [20]. Karaisa and Başar [19] have determined the spectrum
and fine spectrum of the upper traiangular matrix A(r, s, t) over the sequence space
ℓp, (0 < p < ∞). Dündar and Başar [13] have studied the fine spectrum of the
linear operator ∆+ defined by an upper triangle double band matrix acting on the
sequence space c0 with respect to the Goldberg’s classification. Başar, Durna and
Yildirim [9] subdivided the spectra for some generalized difference operators over
certain sequence spaces. Başar [10] also determined the spectrum and fine spectrum
of some particular limitation matrices over some sequence spaces. Tripathy and Das
[27, 28] have studied the fine spectrum of the matrix operators B(r, 0, s) and U(r, s)
over the sequence space cs. The fine spectrum of the forward difference operator
on the Hahn sequence space h was determined by Yeşilkayagil and Kirişci [33].

The Hahn sequence space is defined as

h =

{
x = (xn) ∈ w :

∞∑
k=1

k|∆xk| < ∞ and lim
k→∞

xk = 0

}
,

where ∆xk = xk −xk+1 , for all k ∈ N. This space was defined and studied to some
general properties by Hahn [18]. The norm ||x||h =

∑∞
k=1 k|∆xk|+ supk |xk| on the

space h was defined by Hahn [18]. Rao ( [25], Proposition 2.1) defined a new norm
on h given by ||x||h =

∑∞
k=1 k|∆xk|. Many other authors also investigated various

properties of the Hahn sequence space.
In this paper, we shall determine the spectrum and fine spectrum of the lower

triangular matrix B(r, s) on the Hahn sequence space h . Also we determine the
approximate point spectrum, the defect spectrum and the compression spectrum of
the operator B(r, s) on the sequence space h.

2. Preliminaries and Background

Let X and Y be Banach spaces and T : X → Y be a bounded linear operator.
By R(T ), we denote the range of T , i.e.

R(T ) = {y ∈ Y : y = Tx, x ∈ X}.

By B(X) ,we denote the set of all bounded linear operators on X into itself. If
T ∈ B(X), then the adjoint T ∗ of T is a bounded linear operator on the dual X∗
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of X defined by (T ∗f)(x) = f(Tx), for all f ∈ X∗ and x ∈ X. Let X ̸= {θ} be a
complex normed linear space, where θ is the zero element and T : D(T ) → X be a
linear operator with domain D(T ) ⊆ X. With T , we associate the operator

Tλ = T − λI,

where λ is a complex number and I is the identity operator on D(T ). If Tλ has an
inverse which is linear, we denote it by T−1

λ , that is

T−1
λ = (T − λI)−1,

and call it the resolvent operator of T .

A regular value λ of T is a complex number such that

(R1) T−1
λ exists,

(R2) T−1
λ is bounded

(R3) T−1
λ is defined on a set which is dense in X i.e. R(Tλ) = X.

The resolvent set of T , denoted by ρ(T,X), is the set of all regular values λ
of T . Its complement σ(T,X) = C \ ρ(T,X) in the complex plane C is called the
spectrum of T . Furthermore, the spectrum σ(T,X) is partitioned into three disjoint
sets as follows:

The point(discrete) spectrum σp(T,X) is the set of all λ ∈ C such that T−1
λ does

not exist. Any such λ ∈ σp(T,X) is called an eigenvalue of T .

The continuous spectrum σc(T,X) is the set of all λ ∈ C such that T−1
λ exists

and satisfies (R3), but not (R2), that is, T−1
λ is unbounded.

The residual spectrum σr(T,X) is the set of all λ ∈ C such that T−1
λ exists (and

may be bounded or not), but does not satisfy (R3), that is, the domain of T−1
λ is

not dense in X.

From Goldberg [17], if X is a Banach space and T ∈ B(X) , then there are
three possibilities for R(T ) and T−1 :

(I) R(T ) = X,

(II) R(T ) ̸= R(T ) = X

(III) R(T ) ̸= X

and

(1) T−1 exists and is continuous,

(2) T−1 exists but is discontinuous,

(3) T−1 does not exist.
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If these possibilities are combined in all possible ways, nine different states are
created which may be shown as in Table 1.

I II III

1 ρ(T,X) σr(T,X)

2 σc(T,X) σc(T,X) σr(T,X)

3 σp(T,X) σp(T,X) σp(T,X)

Table 1: Subdivisions of spectrum of a linear operator

These are labeled by: I1, I2, I3, II1, II2, II3, III1, III2 and III3 . If λ is a
complex number such that Tλ ∈ I1 or Tλ ∈ I2 ,then λ is in the resolvent set ρ(T,X)
of T . The further classification gives rise to the fine spectrum of T . If an operator
is in state II2 , then R(Tλ) ̸= R(Tλ) = X and T−1

λ exists but is discontinuous and
we write λ ∈ II2σ(T,X). The state II1 is impossible as if Tλ is injective, then from
Kreyszig

[
[22], Problem 6, p.290

]
T−1
λ is bounded and hence continuous if and only

if R(Tλ) is closed.
Again, following Appell et al. [8], we define the three more subdivisions of the

spectrum called as the approximate point spectrum, defect spectrum and compression
spectrum.

Given a bounded linear operator T in a Banach space X, we call a sequence
(xk) in X as a Weyl sequence for T if ||xk|| = 1 and ||Txk|| → 0 as k → ∞ .

The approximate point spectrum of T , denoted by σap(T,X) , is defined as the
set

(2.1) σap(T,X) = {λ ∈ C : there exists a Weyl sequence for T − λI}

The defect spectrum of T , denoted by σδ(T,X) , is defined as the set

(2.2) σδ(T,X) = {λ ∈ C : T − λI is not surjective}

The two subspectra given by the relations (2.1) and (2.2) form a (not necessarily
disjoint) subdivisions

(2.3) σ(T,X) = σap(T,X) ∪ σδ(T,X)

of the spectrum. There is another subspectrum

σco(T,X) = {λ ∈ C : R(T − λI) ̸= X}

which is often called the compression spectrum of T . The compression spectrum
gives rise to another (not necessarily disjoint) decomposition

(2.4) σ(T,X) = σap(T,X) ∪ σco(T,X)
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Clearly, σp(T,X) ⊆ σap(T,X) and σco(T,X) ⊆ σδ(T,X) . Moreover, it is easy to
verify that

(2.5) σr(T,X) = σco(T,X) \ σp(T,X) and

(2.6) σc(T,X) = σ(T,X) \
[
σp(T,X) ∪ σco(T,X)

]
By the definitions given above, we can illustrate the subdivisions of spectrum

of a bounded linear operator in Table 2.

1 2 3

T−1
λ exists T−1

λ exists T−1
λ does not exist

and is bounded and is not bounded
I R(Tλ) = X λ ∈ ρ(T,X) · · · λ ∈ σp(T,X)

λ ∈ σap(T,X)
λ ∈ σc(T,X) λ ∈ σp(T,X)

II R(Tλ) = X λ ∈ ρ(T,X) λ ∈ σap(T,X) λ ∈ σap(T,X)
λ ∈ σδ(T,X) λ ∈ σδ(T,X)

λ ∈ σr(T,X) λ ∈ σr(T,X) λ ∈ σp(T,X)

III R(Tλ) ̸= X λ ∈ σδ(T,X) λ ∈ σap(T,X) λ ∈ σap(T,X)
λ ∈ σco(T,X) λ ∈ σδ(T,X) λ ∈ σδ(T,X)

λ ∈ σco(T,X) λ ∈ σco(T,X)

Table 2: Subdivisions of spectrum of a linear operator

Proposition 2.1.(Appell et al. [8], Proposition 1.3, p. 28) Spectra and subspectra
of an operator T ∈ B(X) and its adjoint T ∗ ∈ B(X∗) are related by the following
relations:

(a) σ(T ∗, X∗) = σ(T,X).

(b) σc(T
∗, X∗) ⊆ σap(T,X).

(c) σap(T ∗, X∗) = σδ(T,X).

(d) σδ(T ∗, X∗) = σap(T,X).

(e) σp(T ∗, X∗) = σco(T,X).

(f) σco(T ∗, X∗) ⊇ σp(T,X).

(g) σ(T,X) = σap(T,X) ∪ σp(T ∗, X∗) = σp(T,X) ∪ σap(T ∗, X∗).

The relations (c)-(f) show that the approximate point spectrum is in a certain
sense dual to defect spectrum, and the point spectrum dual to the compression spec-
trum. Part (g) of Proposition 2.1 implies, in particular, that σ(T,X) = σap(T,X)
if X is a Hilbert space and T is normal. Roughly speaking, this shows that normal
(in particular, self-adjoint) operators on Hilbert spaces are most similar to matrices
in finite dimensional spaces (Appell et al. [8]).
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Let E and F be two sequence spaces and A = (ank) be an infinite matrix of
real or complex numbers ank, where n, k ∈ N. Then, we say that A defines a matrix
mapping from E into F , and we denote it by A : E → F , if for every sequence
x = (xk) ∈ E, the sequence Ax = {(Ax)n}, the A-transform of x, is in F , where

(2.7) (Ax)n =
∞∑
k=1

ankxk, n ∈ N.

By (E : F ), we denote the class of all matrices such that A : E → F . Thus,
A ∈ (E : F ) if and only if the series on the right hand side of (2.7) converges for
each n ∈ N and every x ∈ E and we have Ax = {(Ax)n}n∈N ∈ F for all x ∈ E.

The matrix B(r, s) is an infinite lower triangular matrix of the form

B(r, s) =


r 0 0 0 · · ·
s r 0 0 · · ·
0 s r 0 · · ·
0 0 s r · · ·
...

...
...

...
. . .


where s ̸= 0.

The following results will be used in order to establish the results of this article.

Lemma 2.1.(Kirişci [21], Theorem 3.5) The matrix A = (ank) gives rise to a
bounded linear operator T ∈ B(h) from h to itself if and only if:

(i)
∞∑

n=1
n|(ank − an+1,k)| converges, for each k,

(ii) sup
k

1
k

∞∑
n=1

n

∣∣∣∣ k∑
v=1

(anv − an+1,v)

∣∣∣∣ < ∞,

(iii) lim
n→∞

ank = 0, for each k.

Lemma 2.2.(Goldberg [17], Page 59) T has a dense range if and only if T ∗ is one
to one.

Lemma 2.3.(Goldberg [17], Page 60) T has a bounded inverse if and only if T ∗ is
onto.

3. Spectrum and Fine Spectrum of the Operator B(r, s) over the Se-
quence Space h

Theorem 3.1. B(r, s) : h → h is a bounded linear operator and

∥ B(r, s) ∥(h:h)≤ |r| + |s|.
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Proof. From Lemma 2.1, B(r, s) : h → h is a bounded linear operator on h if

(i)
∞∑

n=1
n|(ank − an+1,k)| converges, for each k,

(ii) sup
k

1
k

∞∑
n=1

n

∣∣∣∣ k∑
v=1

(anv − an+1,v)

∣∣∣∣ < ∞,

(iii) lim
n→∞

ank = 0, for each k,

where

B(r, s) = (ank) =


r 0 0 0 · · ·
s r 0 0 · · ·
0 s r 0 · · ·
0 0 s r · · ·
...

...
...

...
. . .


For each k, it is clear that lim

n→∞
ank = 0. Also for each k,

∞∑
n=1

n|(ank − an+1,k)| is

finite and so is convergent. It is easy to show that, for each k

1

k

∞∑
n=1

n

∣∣∣∣∣
k∑

v=1

(anv − an+1,v)

∣∣∣∣∣ ≤ |r| +

(
1 +

2

k

)
|s|

and so

sup
k

1

k

∞∑
n=1

n

∣∣∣∣∣
k∑

v=1

(anv − an+1,v)

∣∣∣∣∣ ≤ |r| + 3|s| < ∞.

Now,

||B(r, s)(x)||h =
∞∑
k=1

k |(sxk + rxk+1) − (sxk+1 + rxk+2)|

=
∞∑
k=1

k|s(xk − xk+1) + r(xk+1 − xk+2)|

≤ |s|
∞∑
k=1

k|(xk − xk+1)| + |r|
∞∑
k=1

k|(xk+1 − xk+2)|

≤ (|s| + |r|) ∥ x ∥h

and hence, ∥ B(r, s) ∥(h:h)≤ |r| + |s|. Hence the result. 2

Theorem 3.2. The spectrum of the operator B(r, s) over h is given by

σ(B(r, s), h) = {α ∈ C : |α− r| ≤ |s|}.
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Proof. We prove this theorem by showing that (B(r, s) − αI)−1 exists and is in
(h : h) for |α − r| > |s|, and then show that the operator B(r, s) − αI is not
invertible for |α− r| ≤ |s|.

Let α be such that |α− r| > |s|. Since s ̸= 0 we have α ̸= r and so B(r, s)−αI
is a triangle, therefore (B(r, s) − αI)−1 exists. Let y = (yn) ∈ h . On solving
(B(r, s) − αI)x = y for x in terms of y we get

(B(r, s) − αI)−1 = (bnk)

=



1
r−α 0 0 0 · · ·

− s
(r−α)2

1
r−α 0 0 · · ·

s2

(r−α)3 − s
(r−α)2

1
r−α 0 · · ·

− s3

(r−α)4
s2

(r−α)3 − s
(r−α)2

1
r−α · · ·

...
...

...
...

. . .


From Lemma 2.1, (B(r, s) − αI)−1 will be a bounded linear operator on h if

(i)
∞∑

n=1
n|(bnk − bn+1,k)| converges, for each k,

(ii) sup
k

1
k

∞∑
n=1

n

∣∣∣∣ k∑
v=1

(bnv − bn+1,v)

∣∣∣∣ < ∞,

(iii) lim
n→∞

bnk = 0, for each k.

For each k, we get

bnk =
(−s)n−k

(r − α)n−k+1
=

1

r − α

(
−s

r − α

)n−k

Since |α− r| > |s|, so for each k, lim
n→∞

bnk = 0. For each k, it is easy to show that

∞∑
n=1

n|(bnk − bn+1,k)| ≤ (2k − 1)
1

|r − α|
+ (2k + 1)

|s|
|r − α|2

+ (2k + 3)
|s|2

|r − α|3
+ · · ·

Now for a fixed k, considering 2k − 1 = a, from above we get

∞∑
n=1

n|(bnk − bn+1,k)| ≤ a
1

|r − α|
+ (a + 2)

|s|
|r − α|2

+ (a + 4)
|s|2

|r − α|3
+ · · ·

=
a

|r − α|

(
1 +

|s|
|r − α|

+
|s|2

|r − α|2
+ · · ·

)
+

2

|r − α|

(
|s|

|r − α|
+

2|s|2

|r − α|2
+

3|s|3

|r − α|3
+ · · ·

)
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Since |α− r| > |s|, therefore the two series

1 +
|s|

|r − α|
+

|s|2

|r − α|2
+ · · · and

|s|
|r − α|

+
2|s|2

|r − α|2
+

3|s|3

|r − α|3
+ · · ·

are convergent and converge to 1

1− |s|
|r−α|

and
|s|

|r−α|

(1− |s|
|r−α| )

2 respectively. Therefore,

∞∑
n=1

n|(bnk − bn+1,k)| converges, for each k. Also, for each k, it is easy to show that

1

k

∞∑
n=1

n

∣∣∣∣∣
k∑

v=1

(bnv − bn+1,v)

∣∣∣∣∣ ≤ 1

|r − α| +

(
1 +

2

k

)
|s|

|r − α|2 +

(
1 +

4

k

)
|s|2

|r − α|3 + · · ·

≤ 1

|r − α| + 3
|s|

|r − α|2 + 5
|s|2

|r − α|3 + · · ·

Since |α− r| > |s|, so by D’Alembert’s ratio test it is easy to show that the series
1

|r−α| + 3 |s|
|r−α|2 + 5 |s|2

|r−α|3 + · · · is convergent and therefore we have,

sup
k

1

k

∞∑
n=1

n

∣∣∣∣∣
k∑

v=1

(bnv − bn+1,v)

∣∣∣∣∣ < ∞.

So, by Lemma 2.1, (B(r, s) − αI)−1 is in (h : h). This shows that σ(B(r, s), h) ⊆
{α ∈ C : |α− r| ≤ |s|}.

Now, let α ∈ C be such that |α − r| ≤ |s|. If α ̸= r, then B(r, s) − αI is a
triangle and hence, (B(r, s) − αI)−1 exists. Let y = (1, 0, 0, 0, ...). Then y ∈ h.
Now, (B(r, s) − αI)−1y = x gives

xn =
(−s)n−1

(r − α)n
.

Since |α−r| ≤ |s|, so the sequence (xn) does not converge to 0 and so, x = (xn) /∈ h.
Therefore, (B(r, s)−αI)−1 is not in (h : h) and so α ∈ σ(B(r, s), h). If α = r, then
the operator B(r, s) − αI is represented by the matrix

B(r, s) − αI =


0 0 0 0 · · ·
s 0 0 0 · · ·
0 s 0 0 · · ·
0 0 s 0 · · ·
...

...
...

...
. . .


Since, the range of B(r, s) − αI is not dense, so α ∈ σ(B(r, s), h). Hence,

{α ∈ C : |α− r| ≤ |s|} ⊆ σ(B(r, s), h).
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This completes the proof. 2

Theorem 3.3. The point spectrum of the operator B(r, s) over h is given by

σp(B(r, s), h) = ∅.

Proof. Let α be an eigenvalue of the operator B(r, s) . Then there exists x ̸= θ =

(0, 0, 0, ...) in h such that B(r, s)x = αx. Then, we have

rx1 = αx1

sx1 + rx2 = αx2

sx2 + rx3 = αx3

...

sxn + rxn+1 = αxn+1


,

where n ≥ 1. If xk is the first non-zero entry of the sequence (xn), then α = r .
Then from the relation sxk + rxk+1 = αxk+1, we have sxk = 0. But s ̸= 0 and
hence, xk = 0, a contradiction. Hence, σp(B(r, s), h) = ∅. 2

If T : h → h is a bounded linear operator represented by a matrix A, then it is
known that the adjoint operator T ∗ : h∗ → h∗ is defined by the transpose At of the
matrix A. It should be noted that the dual space h∗ of h is isometrically isomorphic

to the Banach space σ∞ =

{
x = (xk) ∈ w : sup

n

1
n

∣∣∣∣ n∑
k=1

xk

∣∣∣∣ < ∞
}

.

Theorem 3.4. The point spectrum of the operator B(r, s)∗ over h∗ is given by

σp(B(r, s)∗, h∗ ∼= σ∞) = {α ∈ C : |α− r| < |s|}.

Proof. Let α be an eigenvalue of the operator B(r, s)∗. Then there exists x ̸= θ =

(0, 0, 0, ...) in σ∞ such that B(r, s)∗x = αx. Then, we have

B(r, s)tx = αx

⇒ rx1 + sx2 = αx1

rx2 + sx3 = αx2

...

rxn + sxn+1 = αxn


,

where n ≥ 1. Solving, we get

xn =

(
α− r

s

)n−1

x1, n ≥ 1.
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and so, sup
n

1
n

∣∣∣∣ n∑
k=1

xk

∣∣∣∣ < ∞ if and only if |α − r| < |s|. Hence, σp(B(r, s)∗, h∗ ∼=

σ∞) = {α ∈ C : |α− r| < |s|}. 2

Theorem 3.5. The residual spectrum of the operator B(r, s) over h is given by

σr(B(r, s), h) = {α ∈ C : |α− r| < |s|}.

Proof. From part (e) of Propostion 2.1 and relation (2.5), we get

σr(B(r, s), h) = σp(B(r, s)∗, h∗) \ σp(B(r, s), h).

So we get the required result by using Theorem 3.3 and Theorem 3.4. 2

Theorem 3.6. The continuous spectrum of the operator B(r, s) over h is given by

σc(B(r, s), h) = {α ∈ C : |α− r| = |s|}.

Proof. Since, σ(B(r, s), h) is the disjoint union of σp(B(r, s), h), σr(B(r, s), h) and

σc(B(r, s), h) , therefore, by Theorem 3.2, Theorem 3.3 and Theorem 3.5, we get
σc(B(r, s), h) = {α ∈ C : |α− r| = |s|}. 2

Theorem 3.7. If α = r, then α ∈ III1σ(B(r, s), h).

Proof. If α = r, the range of B(r, s) − αI is not dense. So, from Table 2 and
Theorem 3.3, we have α ∈ σr(B(r, s), h). From Table 2,

σr(B(r, s), h) = III1σ(B(r, s), h) ∪ III2σ(B(r, s), h).

Therefore, α ∈ III1σ(B(r, s), h) or α ∈ III2σ(B(r, s), h). Also for α = r,

B(r, s) − αI =


0 0 0 0 · · ·
s 0 0 0 · · ·
0 s 0 0 · · ·
0 0 s 0 · · ·
...

...
...

...
. . .


It is easy to show that the operator (B(r, s) − αI)∗ : σ∞ → σ∞ is onto. So by
Lemma 2.3 we get the operator B(r, s)−αI has a bounded inverse. This completes
the theorem. 2

Theorem 3.8. If α ̸= r and α ∈ σr(B(r, s), h), then α ∈ III2σ(B(r, s), h).

Proof. Let α ̸= r. Since, α ∈ σr(B(r, s), h), therefore, from Table 2,

α ∈ III1σ(B(r, s), h) or α ∈ III2σ(B(r, s), h).

Now, α ∈ σr(B(r, s), h) implies that |α − r| < |s| . Therefore, for each k, the
sequence (bnk)n in Theorem 3.2 does not converge to 0 as n → ∞ and hence, the
operator B(r, s)−αI has no bounded inverse. Therefore, α ∈ III2σ(B(r, s), h). 2
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Theorem 3.9. If α ∈ σc(B(r, s), h) , then α ∈ II2σ(B(r, s), h).

Proof. If α ∈ σc(B(r, s), h), then |α − r| = |s|. Therefore, for each k, the sequence
(bnk)n in Theorem 3.2 does not converge to 0 as n → ∞ and hence, the operator
B(r, s) − αI has no bounded inverse. So, α satisfies Goldberg’s condition 2.

Now we shall show that the operator B(r, s) − αI is not onto. Let y = (yn) =
(1, 0, 0, 0, ...). Clearly, (yn) ∈ h. Let x = (xn) be a sequence such that (B(r, s) −
αI)x = y. On solving, we get

xn =
(−s)n−1

(r − α)n
.

Since, |α − r| = |s| so the sequence {xn} does not converge to 0 as n → ∞ and
so, x = (xn) /∈ h. Hence the operator B(r, s) − αI is not onto. So, α satisfies
Goldberg’s condition II. This completes the proof. 2

Theorem 3.10. The approximate point spectrum of the operator B(r, s) over h is
given by

σap(B(r, s), h) = {α ∈ C : |α− r| ≤ |s|} \ {r}.

Proof. From Table 2,

σap(B(r, s), h) = σ(B(r, s), h) \ III1σ(B(r, s), h).

By Theorem 3.7, III1σ(B(r, s), h) = {r} .This completes the proof. 2

Theorem 3.11. The compression spectrum of the operator B(r, s) over h is given
by

σco(B(r, s), h) = {α ∈ C : |α− r| < |s|}.

Proof. From part (e) of Proposition 2.1, we get

σp(B(r, s)∗, h∗) = σco(B(r, s), h).

Using Theorem 3.4, we get the required result. 2

Theorem 3.12. The defect spectrum of the operator B(r, s) over h is given by

σδ(B(r, s), h) = {α ∈ C : |α− r| ≤ |s|}.

Proof. From Table 2, we have

σδ(B(r, s), h) = σ(B(r, s), h) \ I3σ(B(r, s), h).

Also,

σp(B(r, s), h) = I3σ(B(r, s), h) ∪ II3σ(B(r, s), h) ∪ III3σ(B(r, s), h).
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By Theorem 3.3, we have σp(B(r, s), h) = ∅ and so I3σ(B(r, s), h) = ∅. Hence,
σδ(B(r, s), h) = {α ∈ C : |α− r| ≤ |s|}. 2

Theorem 3.13. The following statements hold:

(i) σap(B(r, s)∗, h∗ ∼= σ∞) = {α ∈ C : |α− r| ≤ |s|}.

(ii) σδ(B(r, s)∗, h∗ ∼= σ∞) = {α ∈ C : |α− r| ≤ |s|} \ {r}.

Proof. From parts (c) and (d) of Proposition 2.1, we get

σap(B(r, s)∗, h∗ ∼= σ∞) = σδ(B(r, s), h)

and
σδ(B(r, s)∗, h∗ ∼= σ∞) = σap(B(r, s), h).

Using Theorem 3.10 and Theorem 3.12, we get the required results. 2
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