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CONTINUITY OF APPROXIMATE POINT SPECTRUM ON

THE ALGEBRA B(X)

Salvador Sánchez-Perales and Victor A. Cruz-Barriguete

Abstract. In this paper we provide a brief introduction to the conti-
nuity of approximate point spectrum on the algebra B(X), using basic
properties of Fredholm operators and the SVEP condition. Also, we give
an example showing that in general it not holds that if the spectrum is

continuous an operator T , then for each λ ∈ σs−F (T ) \ ρ±
s−F

(T ) and

ǫ > 0, the ball B(λ, ǫ) contains a component of σs−F (T ), contrary to
what has been announced in [J. B. Conway and B. B. Morrel, Opera-
tors that are points of spectral continuity II, Integral Equations Operator
Theory 4 (1981), 459–503] page 462.

1. Introduction

It is known that the properties of the spectrum of a linear operator defines
its behavior. Since exact computations of the spectrum are almost always
impossible, we attempt obtain it in approximate form, so the study of the
continuity of the spectrum or any of its parts takes an essential role.

Newburgh (see [14]) was one of the first to make a systematic investigation
about the continuity of spectrum. After him several authors have researched
the subject extensively (for example [3], [4], [6], [8], [9], [10] and [11]).

Conway and Morrel [7] characterize the continuity of the approximate point
spectrum in the class of bounded linear operators defined on Hilbert spaces. In
this paper we observe that for the sufficient condition in that characterization
the several hypotheses can be reduced on the class of bounded linear operators
(now defined on Banach spaces) whose adjoint has SVEP. Also, we give an
example showing that the proof of their characterization mentioned has a small
omission.

Received May 19, 2012.
2010 Mathematics Subject Classification. Primary 47A10, 47A53.

Key words and phrases. approximate point spectrum, continuity of the spectrum.

c©2013 The Korean Mathematical Society

487
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2. The spectrum of a bounded operator

Let X and Y be normed spaces. A linear operator T : X → Y is bounded,
if there exists a constant M ≥ 0 such that

‖Tx‖Y ≤ M‖x‖X for all x ∈ X.

It is easy to see that bounded linear operators are continuous and even
uniformly continuous whit respect to their norms. Conversely, a linear operator
is bounded if it is continuous at 0.

If T : X → Y is a bounded linear operator, then its norm ‖T ‖ is defined by

(2.1) ‖T ‖ = inf{β ≥ 0 : ‖Tx‖Y ≤ β‖x‖X for all x ∈ X}.

Equivalent expressions of ‖T ‖ are:

‖T ‖ = sup
x 6=0

‖Tx‖Y
‖x‖X

; ‖T ‖ = sup
‖x‖X≤1

‖Tx‖Y ; ‖T ‖ = sup
‖x‖X=1

‖Tx‖Y .

Let X and Y be complex Banach spaces and let B(X,Y ) denote the space of
all bounded linear operators from X to Y , abbreviate B(X,X) to B(X). This
set with the usual operations of addition and multiplication by a scalar is a
vector space over C, moreover, B(X) is an algebra with the multiplication given
by (T, S) 7→ TS (composition of functions). It is easy to see that ‖ · ‖, exposed
in (2.1), defines a norm on B(X) and satisfies the conditions: ‖TS‖ ≤ ‖T ‖‖S‖,
T, S ∈ B(X), and ‖I‖ = 1. Thus B(X) is a Banach algebra with identity.

A class of special interest in B(X) are the compact operators, denoted by
K(X). Remember that an operator T ∈ B(X) is compact if and only if for each
bounded sequence {xn}n∈N in X , there exists a subsequence {xnk

}k∈N and an
element x ∈ X such that Txnk

→ x. It is well known that K(X) is two-side
ideal in B(X). This fact enables us to define the Calkin algebra over X as the
quotient algebra C(X) = B(X)/K(X). Moreover, K(X) is a closed subspace of
B(X), thus C(X) with the norm ‖T +K(X)‖ = inf U∈K(X)‖T +U‖ is a Banach
algebra. We shall use π to denote the natural homomorphism of B(X) onto
C(X); π(T ) = T +K(X).

Since B(X) is an algebra with identity we can consider, for an operator
T ∈ B(X), the set

ρ(T ) = {λ ∈ C | λI − T is invertible in B(X)}.

This set is called the resolvent of T . Its complement, a more interested set,
is denoted by σ(T ) and is called the spectrum of T . Namely,

σ(T ) = {λ ∈ C | λI − T is not invertible in B(X)}.

It is well known that if X is a finite-dimensional normed vector space and
T : X → X is a linear operator, then the spectrum of T is precisely the set of
eigenvalues of T . Remember, a complex number λ ∈ C, is an eigenvalue of an
linear operator T , if there exists x ∈ X with x 6= 0 such that Tx = λx. The
set of all eigenvalues of T is denoted by σp(T ).
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In general, for X a complex Banach space, the spectrum of bounded linear
operator T ∈ B(X), σ(T ), is a compact nonempty subset of C. Further, this
set is bounded by ‖T ‖, i.e., σ(T ) ⊆ B(0, ‖T ‖).

Example 2.1. We give the spectrum of some operators:

(a) Let T : L2[0, 1] → L2[0, 1] be defined by (Tf)(t) = tf(t). Then σ(T ) =
[0, 1].

(b) Consider l2(N) = {{xn}n∈N ⊆ C |
∑

n∈N
|xn|2 < ∞}. This is a Hilbert

space with the inner product 〈{xn}; {yn}〉 =
∑

n∈N
xnyn. Let U : l2(N) →

l2(N) be defined by U(x) = (0, x1, x2, x3, . . .), x = (x1, x2, x3, . . .). Usually
this operator is called the unilateral shift and its spectrum is σ(U) = {λ ∈
C | |λ| ≤ 1}.

(c) Two operators T, S ∈ B(X) are similar, if there exists U ∈ B(X) invertible
such that UT = SU . If T and S are similar, then σ(T ) = σ(S).

(d) Let H be a complex Hilbert space. An operator T ∈ B(H) is unitary if and
only if T ∗T = TT ∗ = I, where T ∗ (the adjoint of T ) is the unique operator
T ∗ : H → H such that 〈Tx; y〉 = 〈x;T ∗y〉 for all x, y ∈ H . If T ∈ B(H) is
unitary, then σ(T ) = {λ ∈ C | |λ| = 1}.

The spectrum of a bounded linear operator can be divided into subsets of
different ways, and each of these subsets are called parts of the spectrum. For
T ∈ B(X), the surjective spectrum and the approximate point spectrum of T
is defined, respectively, as

σsu(T ) = {λ ∈ C | λI − T is not surjective}

and

σap(T ) = {λ ∈ C | λI − T is not bounded below},

where, remember an operator T is bounded below if and only if there is K > 0
such that K‖x‖ ≤ ‖Tx‖ for all x ∈ X . From this, it follows that λ ∈ σap(T )
if and only if there is a sequence {xn}n∈N in X with ‖xn‖ = 1 such that
(λI − T )xn → 0. Using this equivalence it is proved that σap(T ) is a closed
nonempty subset of C, moreover, ∂σ(T ) ⊆ σap(T ).

Let X and Y be complex Banach spaces and consider T ∈ B(X,Y ). Denote
X∗ (resp. Y ∗) the dual of X (resp. Y ), i.e., X∗ = B(X,C) and Y ∗ = B(Y,C).
For T ∈ B(X,Y ), the adjoint operator T ∗ : Y ∗ → X∗ of T is defined as:

(T ∗f∗)(x) = f∗(Tx)

for all f∗ ∈ Y ∗ and x ∈ X .
This definition is different to that given in Hilbert spaces, but it is a gen-

eralization. The adjoint T ∗ of T is a linear operator and ‖T ∗‖ = ‖T ‖. Let
T, S ∈ B(X,Y ), A ∈ B(Y, Z) and γ1, γ2 ∈ C, the adjoint has the following easy
properties:

(γ1T + γ2S)
∗ = γ1T

∗ + γ2S
∗ and (AT )∗ = T ∗A∗.
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Moreover, for T ∈ B(X),

σ(T ) = σ(T ∗), σap(T ) = σsu(T
∗) and σap(T

∗) = σsu(T ).

3. Parts of the spectrum given by semi-Fredholm operators

Each linear operator T : X → X has associated two basic subspaces, its
kernel N(T ) = {x ∈ X | Tx = 0} and its range R(T ) = {Tx | x ∈ X}. If T is
bounded its kernel N(T ) is a closed subspace, however, its range may be not
closed.

Let T : X → X be a bounded operator. Define α(T ) = dimN(T ) and
β(T ) = dimX/R(T ), when theses spaces are finite dimensional, otherwise we
set α(T ) = ∞ and β(T ) = ∞. An operator T ∈ B(X) is called upper semi-
Fredholm (respectively lower semi-Fredholm) if it has closed range and α(T ) <
∞ (respectively β(T ) < ∞). The set of all upper (resp. lower) semi-Fredholm
operator in B(X) is denoted by Φ+(X) (resp. Φ−(X)). We say that T ∈ B(X)
is a semi-Fredholm operator if T ∈ Φ+(X)∪Φ−(X) = Φ±(X). The index of a
semi-Fredholm operator T is defined as i(T ) = α(T ) − β(T ). When T is both
upper and lower semi-Fredholm, T is said to be a Fredholm operator. This
class of operators is denoted by Φ(X).

Remark 3.1. We highlight below some basic properties concerning algebraic
and topological nature of the class of semi-Fredholm operators.

(a) If T ∈ Φ+(X) and S ∈ Φ+(X), then TS ∈ Φ+(X). Analogously, if U ∈
Φ−(X) and V ∈ Φ−(X), then UV ∈ Φ−(X). Moreover, if T ∈ Φ(X) and
S ∈ Φ(X), then TS ∈ Φ(X) and i(TS) = i(T ) + i(S).

(b) The sets Φ+(X) and Φ−(X) are mutually dual:

T ∈ Φ+(X) ⇔ T ∗ ∈ Φ−(X
∗)

and
T ∈ Φ−(X) ⇔ T ∗ ∈ Φ+(X

∗).

Moreover,

α(T ∗) = β(T ), α(T ) = β(T ∗) and α(T ) = α(T ∗∗).

(c) Let T ∈ Φ+(X). Then there exists ǫ > 0 such that S ∈ B(X) and ‖S‖ < ǫ
implies T + S ∈ Φ+(X). Furthermore

α(T + S) ≤ α(T ) and i(T + S) = i(T ).

Analogously, if T ∈ Φ−(X), then there exists ǫ > 0 such that for every
S ∈ B(X) with ‖S‖ < ǫ we have T + S ∈ Φ−(X) and

β(T + S) ≤ β(T ) and i(T + S) = i(T ).

From this it follows that Φ+(X) and Φ−(X) are open subsets of B(X)
and the index function

i : Φ±(X) → Z ∪ {±∞}

is continuous.



CONTINUITY OF APPROXIMATE POINT SPECTRUM ON THE ALGEBRA B(X) 491

(d) Let T ∈ B(X). Then, there exist V ∈ B(X) and K ∈ K(X) such that
V T = I+K if and only if T ∈ Φ+(X) and there exists a bounded projection
of X onto R(T ).

Also, there exist U ∈ B(X) and K ∈ K(X) such that TU = I + K if
and only if T ∈ Φ−(X) and there exists a bounded projection of X onto
N(T ).

The proof theses important results may be found in Caradus, Pfaffen-
berger, and Yood [5].

Let M be a closed subspace of a Banach space X . If there exists a closed
subspace N of X such that X = M ⊕N , then M is said to be complemented
in X . Equivalently, M is complemented in X if and only if there exists P a
bounded projection of X onto M .

Let Z be a Banach algebra with identity. Denote by Gl(Z) (resp. Gr(Z))
the set of all left (resp. right) invertible elements of Z. Using Remark 3.1(d),
we obtain the next proposition.

Proposition 3.2. Let π : B(X) → C(X) be the canonic homomorphism. Then

for T ∈ B(X) the following equivalences holds.

(a) λI−π(T ) ∈ Gl(C(X)) ⇔ λI−T ∈ Φ+(X) and R(λ−T ) is complemented

in X ;
(b) λI−π(T ) ∈ Gr(C(X)) ⇔ λI−T ∈ Φ−(X) and N(λ−T ) is complemented

in X.

For T ∈ B(X) and k ∈ N ∪ {−∞,∞}, let ρks−F (T ) denote the set of λ ∈ C

for which λI−T ∈ Φ±(X) and i(λI −T ) = k. Put ρ+s−F (T ) = ∪
1≤k≤∞

ρks−F (T ),

ρ−s−F (T ) = ∪
−∞≤k≤−1

ρks−F (T ) and ρ±s−F (T ) = ρ−s−F (T )∪ρ+s−F (T ). Also, define

the sets:

φ+(T ) = {λ ∈ ρ+s−F (T ) |N(λI − T ) is complemented in X},

φ+∞(T ) = {λ ∈ ρ+∞
s−F (T ) |N(λI − T ) is complemented in X},

φ−(T ) = {λ ∈ ρ−s−F (T ) |R(λI − T ) is complemented in X},

φ−∞(T ) = {λ ∈ ρ−∞
s−F (T ) |R(λI − T ) is complemented in X}.

We set φ±∞(T ) = φ−∞(T ) ∪ φ+∞(T ). One can prove that φ+(T ), φ−(T ),
φ+∞(T ) and φ−∞(T ) are open subsets of C and that in Hilbert spaces the
equalities φ+(T ) = ρ+s−F (T ), φ+∞(T ) = ρ+∞

s−F (T ), φ−(T ) = ρ−s−F (T ) and

φ−∞(T ) = ρ−∞
s−F (T ) holds.

All classes of operators mentioned above motivate the study of some other
distinguished parts of the spectrum: The Fredholm spectrum of an operator
T ∈ B(X) is defined as σe(T ) = {λ ∈ C | λI − T 6∈ Φ(X)}, the semi-Fredholm
spectrum of T is σs−F (T ) = {λ ∈ C | λI − T 6∈ Φ±(X)}, the Weyl spectrum
of T is σW (T ) = {λ ∈ C | λI − T 6∈ Φ(X) or i(λI − T ) 6= 0}. The left
essential spectrum (resp. the right essential spectrum) of T ∈ B(X), are defined
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respectively by σle(T ) = {λ ∈ C | λI − π(T ) 6∈ Gl(C(X))} and σre(T ) = {λ ∈
C | λI − π(T ) 6∈ Gr(C(X))}. Finally put

σlre(T ) = σle(T ) ∩ σre(T ).

It is clear that

σs−F (T ) ⊆ σlre(T ),

but the opposite inclusion is not always satisfied in general Banach spaces.
However when T is defined on a Hilbert space H , then σs−F (T ) = σlre(T ) is
satisfied, because every closed subspace of H is complemented in H .

Proposition 3.3. If T ∈ B(X), then

(a) σe(T ) = σs−F (T ) ∪ ρ±∞
s−F (T );

(b) σe(T ) = σlre(T ) ∪ φ±∞(T );
(c) ∂σe(T ) ⊆ σs−F (T ).

Proof. (a) It is trivial. (b). Take λ ∈ σe(T ). If λ ∈ σle(T ) and λ ∈ σre(T ),
then λ ∈ σlre(T ). Suppose that λI − π(T ) is left invertible in C(X), then by
Proposition 3.2 (a), λI − T ∈ Φ+(X) and R(λI − T ) is complemented in X .
From λ ∈ σe(T ), we obtain that β(λI−T ) = ∞, thus i(λI−T ) = −∞ and hence
λ ∈ φ−∞(T ). A similar argument shows that if λI − π(T ) is right invertible
in C(X), then λ ∈ φ+∞(T ). Consequently, σe(T ) ⊆ σlre(T ) ∪ φ±∞(T ). The
opposite inclusion is obtained readily.

(c) Note that ρ±∞
s−F (T ) ⊆ intσe(T ), and this implies that

∂σe(T ) = σe(T ) \ intσe(T ) ⊆ σe(T ) \ ρ
±∞
s−F (T ).

Then, by item (a), ∂σe(T ) ⊆ σs−F (T ). �

The next theorem establishes a relationship of connectedness between σlre(T )
and σe(T ).

Theorem 3.4. Let T ∈ B(X). If C is a component of σlre(T ) and C ∩

φ±∞(T ) = ∅, then C is a component of σe(T ).

Proof. From Proposition 3.3(b),

σe(T ) = [σlre(T ) \ ∂φ±∞(T )] ∪ φ±∞(T ).

We claim that

(3.1) [σlre(T ) \ ∂φ±∞(T )] ∩ φ±∞(T ) = ∅.

Assume otherwise, then there exists λ ∈ [σlre(T ) \ ∂φ±∞(T )] ∩ φ±∞(T ).

This implies, since φ±∞(T ) = φ±∞(T ) ∪ ∂φ±∞(T ), that λ ∈ φ±∞(T ). If
λ ∈ φ+∞(T ), then λI − T ∈ Φ−(X) and N(λI − T ) is complemented in X , so
by Proposition 3.2(b), λI − π(T ) is right invertible in C(X), this contradicts
that λ ∈ σlre(T ). When λ ∈ Φ−∞(T ) also we have a contradiction. Therefore
the equality (3.1) follows.
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Let D be a connected subset of σe(T ) such that C ⊆ D. Then

D = [D ∩ (σlre(T ) \ ∂φ±∞(T ))] ∪ [D ∩ φ±∞(T )].

We set E = D ∩ (σlre(T ) \ ∂φ±∞(T )). Since C ∩ φ±∞(T ) = ∅, we obtain
that C ⊆ E, and this implies that either E = C or E is not connected. If E
fails to be connected, then there exist E1 and E2 compact subsets of σlre(T )
such that E = E1 ∪ E2, E1 ∩ E2 = ∅, E1 6= ∅ and E2 6= ∅. Observe that

D = E1 ∪ [E2 ∪ (D ∩ φ±∞(T ))],

and by (3.1),

E1 ∩ [E2 ∪ (D ∩ φ±∞(T ))] = ∅ and E1 ∩ E2 ∪ (D ∩ φ±∞(T )) = ∅.

Consequently D is not connected, which is a contradiction. Thus E = C.
Therefore

D = C ∪ (D ∩ φ±∞(T )).

Again, from C ∩ φ±∞(T ) = ∅ and since D is connected, we have D ∩

φ±∞(T ) = ∅. Therefore, C = D. We conclude that C is a component of
σe(T ). �

4. Spectral continuity

Let S denote the collection of all non-empty compact sets of C. The spec-
trum, the approximate point spectrum and the surjective spectrum can be
viewed as functions from B(X) to S mapping operators T ∈ B(X) into their
respective spectra. We study the continuity of these functions, using uniform
norm in B(X) and Hausdorff metric in S. It is well known that the convergence
in S with the Hausdorff metric can be characterized through the concepts of
limit inferior and superior.

Let {En}n∈N be a sequence of arbitrary subsets of C. Define the limits infe-
rior and superior of {En}n∈N, denoted respectively by lim infEn and lim supEn,
as follows:

• lim infEn = {λ ∈ C | for every ǫ > 0, there exists N ∈ N such that
B(λ, ǫ) ∩ En 6= ∅ for all n ≥ N}.

• lim supEn = {λ ∈ C | for every ǫ > 0, there exists J ⊆ N infinite such
that B(λ, ǫ) ∩ En 6= ∅ for all n ∈ J}.

Next lemma is helpful to demonstrate several results in this paper.

Lemma 4.1. Let {En}n∈N be a sequence of subsets of C. The following state-

ments are satisfied:

(a) lim inf En and lim supEn are closed subsets of C.

(b) λ ∈ lim supEn if and only if there exists an increasing sequence of natural

numbers n1 < n2 < n3 < · · · and points λnk
∈ Enk

for all k ∈ N such

that limλnk
= λ.
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(c) λ ∈ lim infEn if and only if there exists a sequence {λn}n∈N in C such

that limλn = λ, and for some n0 ∈ N, λn ∈ En for all n ≥ n0.

Lemma 4.2. Let {En}n∈N be a sequence of closed subsets of C. If there exists

K a compact subset of C for which En ⊆ K for all n ∈ N. Then En → E in

the Hausdorff metric if and only if lim supEn ⊆ E and E ⊆ lim inf En.

Let Tn, T ∈ B(X). We say that Tn converge in norm to T , and is denoted
by Tn → T , if limn→∞ ‖Tn − T ‖ = 0. Consider ϕ : B(X) → S, this function
is continuous at T ∈ B(X) if and only if for each {Tn}n∈N in B(X) such that
Tn → T , it follows that ϕ(Tn) → ϕ(T ), where the latter convergence is with
respect to the Hausdorff metric.

Remark 4.3. In particular, if ϕ ∈ {σ, σap, σsu} and T ∈ B(X). Then ϕ :
B(X) → S is continuous at T if and only if lim supϕ(Tn) ⊆ ϕ(T ) and ϕ(T ) ⊆
lim inf ϕ(Tn) for all Tn → T . It results from Lemma 4.2, because if Tn → T ,
then

ϕ(Tn) ⊆ σ(Tn) ⊆ B(0, ‖Tn‖) ⊆ B(0, ǫ1 + ‖T ‖)

for all n ∈ N and some ǫ1 > 0.

On the other hand, it also holds that if ϕ ∈ {σ, σap, σsu} and T : X → X is
any bounded operator, then lim supϕ(Tn) ⊆ ϕ(T ) for all Tn → T . This result
is an immediate consequence of the following lemma due to Halmos and Lumer
[12].

Lemma 4.4. Let Ω be a closed subset of B(X) and τ a function defined by

τ(T ) = {λ ∈ C | λI − T ∈ Ω}, T ∈ B(X).

Then lim sup τ(Tn) ⊆ τ(T ) for all Tn → T .

Proof. Consider λ ∈ lim sup τ(Tn) and suppose that λ 6∈ τ(T ). Inasmuch as Ω
is closed, there is ǫ > 0 such that B(λI − T, ǫ) ⊆ B(X) \Ω. Let n1 < n2 < · · ·
be an increasing sequence of natural numbers and let λnk

∈ τ(Tnk
) for all

k ∈ N such that λnk
→ λ. Since Tn → T , there is k0 ∈ N such that for every

k ≥ k0, λnk
I − Tnk

∈ B(λI − T, ǫ). Take k ≥ k0, then λnk
I − Tnk

6∈ Ω and so
λnk

6∈ τ(Tnk
), this is a contradiction. �

The set of bounded operators that are invertible, the set of all T ∈ B(X)
which are one-to-one and have R(T ) closed and the set of surjective bounded
operators are open in B(X) (see [5, Theorem 2.5.6]). So by Lemma 4.4 the
following theorem is satisfied.

Theorem 4.5. Let ϕ ∈ {σ, σap, σsu}. For each Tn → T , it holds that

lim supϕ(Tn) ⊆ ϕ(T ).

However, in general the functions σ, σap and σsu are not continuous as shown
in the next example.



CONTINUITY OF APPROXIMATE POINT SPECTRUM ON THE ALGEBRA B(X) 495

Example 4.6. Let U be the unilateral shift on ℓ2(N) and let T , Tn, be oper-
ators defined on ℓ2(N)⊕ ℓ2(N) as

T =

[

U 0
0 U∗

]

Tn =

[

U 1
n
(I − UU∗)

0 U∗

]

.

Observe that Tn → T , but σ(Tn) 6→ σ(T ). Indeed, each Tn is similar to T1

and T1 is an unitary operator, so for every n, σ(Tn) = σ(T1) = {λ ∈ C | |λ| =
1}, and σ(T ) = {λ ∈ C | |λ| ≤ 1}.

From Theorem 4.5, in order to see that ϕ : B(X) → S is continuous at
T ∈ B(X), where ϕ ∈ {σ, σap, σsu}, it is sufficient to show that for each
{Tn}n∈N in B(X) that converges to T , it is satisfied that τ(T ) ⊆ lim inf τ(Tn).

Next, let us note certain sets of σ(T ) for which are included in lim inf σ(Tn).
First, the isolated points of σ(T ) are included in lim inf τ(Tn).

Proposition 4.7 ([14]). If Tn, T ∈ B(X) be such that Tn → T , then isoσ(T ) ⊆
lim inf σ(Tn), where isoσ(T ) = {isolated points of σ(T )}.

If T ∈ B(X) and Λ is a spectral set for T (i.e., Λ is both open and closed in
σ(T )), define the corresponding spectral projection as

P (T,Λ) =
1

2πi

∫

C

(zI − T )−1dz,

where C is a Cauchy contour that separates Λ from σ(T ) \ Λ. For T ∈ B(X)
define

π0(T ) = {λ ∈ isoσ(T ) | P (T, {λ}) has finite rank}.

Proposition 4.8. Let Tn, T ∈ B(X) be such that Tn → T . Then π0(T ) ⊆
lim inf π0(Tn).

Proof. See [1, Corollary 2.13]. �

Next proposition give another collection of points that is included in lim
infσ(Tn).

Proposition 4.9. If {Tn} is a sequence in B(X) such that Tn → T , then

σ(T ) \ σap(T ) ⊆ lim infσ(Tn).

Proof. Let λ ∈ σ(T ) \ σap(T ), then λI − T is an injective operator with closed
range, this implies that λI −T is a semi-Fredholm operator and i(λI −T ) ≤ 0,
but λI − T is not invertible, so i(λI − T ) < 0. Observe that, if there exists
an increasing sequences of natural numbers {nk}k∈N such that λI − Tnk

is
invertible for all k ∈ N, then by the continuity of index, i(λI − T ) = 0, that is
a contradiction. So there exists n0 ∈ N such that λ ∈ σ(Tn), for all n ≥ n0,
which implies that λ ∈ lim inf σ(Tn). �

Theorem 4.10. If σap is continuous T , then σ is continuous at T .

Conway and Morrel in their seminal paper [6] characterize the continuity of
the spectrum in the algebra B(H), where H is a Hilbert space:
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Theorem 4.11 ([6, Teorema 3.1]). Let H be a Hilbert space. The function σ

is continuous at T ∈ B(H), if and only if, for each λ ∈ σ(T ) \ ρ±s−F (T ) and

ǫ > 0, the ball B(λ, ǫ) contains a component of σs−F (T ) ∪ π0(T ).

Later, in [7], they give a characterization of continuity of the approximate
point spectrum:

Theorem 4.12. Let H be a Hilbert space. The function σap is continuous at

T ∈ B(H), if and only if,

(a) σ is continuous at T ,
(b) ρ−s−F (T ) ∩ σp(T ) = ∅,

(c) ρ−∞
s−F (T ) = int ρ−∞

s−F (T ) and,

(d) for every −∞ < k ≤ −1, it holds that, for each λ ∈ int ρks−F (T )\ρ
k
s−F (T )

and ǫ > 0, the ball B(λ, ǫ) contains a component of σs−F (T ).

In this paper we observe that for the sufficient condition in Theorem 4.12
the several hypotheses can be reduced on the class of bounded operators (now
defined on a Banach space) whose adjoint has SVEP. On the other hand, it
should be noted that Conway and Morrel show the above theorem using the
following equivalence (see [7, p. 462]):

• σ is continuous at T ∈ B(H) if and only if int (σ(T ) \σW (T )) = ∅ and,

for each λ ∈ σs−F (T ) \ ρ
±
s−F (T ) and ǫ > 0, the ball B(λ, ǫ) contains a

component of σs−F (T ).

But this proposition is false as shown in Example 4.13. However, the conclu-
sion of above mentioned theorem is true and the proof is a slight modification
of the given.

Example 4.13. Let αnk = (1 + 1
n
)exp(2πi k

n
) for all n ∈ N and 1 ≤ k ≤ n,

and consider M : ℓ2(N) → ℓ2(N) the diagonal operator defined by

M =











α11

α21

α22

. . .











.

It is clear that σp(M) = {αnk |n ∈ N, 1 ≤ k ≤ n} where each eigen-
value has geometry multiplicity one. Let {αm}m∈N be and indexation of
{α11, α21, α22, α31, α32, . . .}. It is not difficult to prove that

λ ∈ ρ(M) = C \ σ(M) ⇔ inf
m

|λ− αm| > 0.

Thus

σ(M) = σp(M) ∪ {λ ∈ C | inf
m
|λ− αm| = 0, and for all m,λ 6= αm}

= {αm}m∈N ∪ {λ ∈ C | |λ| = 1}.
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Let m ∈ N, since inf {|αm − αj | | j ∈ N and j 6= m} > 0 and for each

{yj}j∈N ∈ R(αmI −M), ym = 0. It follows that R(αmI−M) is a closed subset
of ℓ2(N). Therefore, for every m ∈ N, αmI −M is a semi-Fredholm operator,
and clearly αm is an isolated point of σ(M). Consequently {αm}m∈N ⊆ π0(M).

From that λI − M is injective for all λ 6∈ {αm}m∈N, it is easy to see that
σs−F (M) = {λ ∈ C | |λ| = 1}, ρ±s−F (M) = ∅ and π0(M) = {αm}m∈N. This
implies that

σ(M) = π0(M) ⊆ lim inf π0(Mn) ⊆ lim inf σ(Mn)

for all Mn → M , that is, σ is continuous at M . However, for every λ0 ∈

σs−F (T ) \ ρ
±
s−F (T ) and ǫ > 0 such that {λ ∈ C | |λ| = 1} 6⊆ B(λ0, ǫ), the ball

B(λ0, ǫ) does not contain a component of σs−F (T ).

Lemma 4.14 ([6, Lemma 1.5]). Consider {Tn}n∈N in B(X) such that Tn → T .

(a) If C is a component of σ(T ) and U an open set containing C, then

there exits n0 ∈ N such that for each n ≥ n0, U contains a component

of σ(Tn).
(b) If C is a component of σe(T ) and U an open set containing C, then

there exists n0 ∈ N such that for each n ≥ n0, U contains a component

of σe(Tn).

Proof. The following proof works for any Banach algebra, so that only part (a)
is proved.

Let C be a component of σ(T ) and U be an open set of C that contains to
C. The set σ(T ) \ U is closed in σ(T ), and C ∩ [σ(T ) \ U ] = ∅. Then there
exists X1 6= ∅ open and closed in σ(T ) such that C ⊆ X1 ⊆ U . Observe that
U ∩ [C \ (σ(T ) \ X1)] is open in C and X1 ⊆ U ∩ [C \ (σ(T ) \ X1)], thus by
[1, Theorem 1.21], there exists a Cauchy domain D such that X1 ⊆ D ⊆ D ⊆
U ∩ [C \ (σ(T ) \X1)]. Let C be a Cauchy contour determined by the boundary
of D. Then C separates X1 from σ(T ) \X1.

By [1, Proposition 2.9(a)], there exits N ∈ N such that for every n ≥ N , C
lies in ρ(Tn), Λn = σ(Tn)∩D is a spectral set for Tn, and C separates Λn from
σ(Tn) \ Λn. Moreover, if

P (Tn,Λn) =
1

2πi

∫

C

(zI − Tn)
−1dz, P (T,X1) =

1

2πi

∫

C

(zI − Tn)
−1dz,

then P (Tn,Λn) → P (T,X1). Note P (T,X1) 6= 0 because X1 6= ∅ (see [1,
Corollary 1.27]). Hence there exists n0 > N such that P (Tn,Λn) 6= 0 for all
n ≥ n0. Thus by [1, Corollary 1.27], Λn 6= ∅ for all n ≥ n0.

Let n ≥ n0 arbitrary. Since Λn is both open and closed in σ(Tn) and Λn 6= ∅,
it follows that, there exists Cn a component of σ(Tn) such that Cn ⊆ Λn.
Observe that Λn ⊆ D ⊆ U . Thus Cn ⊆ U . Therefore U contains a component
of σ(Tn) for all n ≥ n0. �

In order to study the continuity of σap on the clase of operators defined on
Banach spaces we have introduced the sets φ+(T ), φ−(T ), φ±∞(T ) instead of
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the sets ρ+s−F (T ), ρ
−
s−F (T ), ρ

±∞
s−F (T ). The following lemma is a generalization

of [7, Lemma 3.1] for the case of Banach spaces.

Lemma 4.15 ([15, Lemma 2]). If Tn → T in B(X) and λ 6∈ φ±∞(T ) is such

that, for every ǫ > 0, the ball B(λ, ǫ) contains a component of σlre(T ), then
λ ∈ lim infσs−F (Tn).

Proof. Let ǫ > 0. Since λ 6∈ φ±∞(T ), there is r > 0 such that B(λ, r) ∩

φ±∞(T ) = ∅. Set ǫ1 = min {ǫ, r}, by hypothesis, B(λ, ǫ1) contains a component

C of σlre(T ), then C ∩ φ±∞(T ) = ∅ and so by Theorem 3.4, C is a component
of σe(T ). From Lemma 4.14(b), there exists n0 ∈ N, such that for every n ≥ n0,
B(λ, ǫ1) contains a component Cn of σe(Tn). By this and Proposition 3.3(c),
it follows that for each n ≥ n0,

∅ 6= ∂Cn ⊆ ∂σe(Tn) ⊆ σs−F (Tn).

Thus for every n ≥ n0, B(λ, ǫ) ∩ σs−F (Tn) 6= ∅, which implies that λ ∈
lim inf σs−F (Tn). �

We recall that an operator T ∈ B(X) is said to have the single-valued ex-
tension property at λ ∈ C, abbreviate T has SVEP at λ ∈ C, if for every
neighborhood Uλ of λ, the only analytic function f : Uλ → X which satisfies
the equation (µI − T )f(µ) = 0 for all µ ∈ Uλ is the function f ≡ 0.

It is clear that T has SVEP at every point of the resolvent ρ(T ), moreover
from identity theorem for analytic functions, both T and T ∗ has SVEP at every
point of the boundary ∂σ(T ) of the spectrum. In particular, both T and T ∗

have SVEP at every isolated point of the spectrum.
Following [13], we say that T ∈ B(X) satisfies the Browder’s theorem, if

σ(T ) \ σW (T ) = π0(T ). This property is characterized in terms of the SVEP.
Indeed, a necessary and sufficient condition for T satisfies Browder’s theorem
is that T has SVEP at every point λ 6∈ σW (T ).

Theorem 4.16 ([15, Theorem 3]). Let T ∈ B(X) such that T ∗ has SVEP at

every β 6∈ σlre(T ). If for each λ ∈ σlre(T ) \ φ+(T ) and ǫ > 0, the ball B(λ, ǫ)
contains a component of σlre(T ), then σap is continuous at T .

Proof. Let {Tn}n∈N be a sequence in B(X) that converges at T , and let λ ∈
σap(T ).

Case I: λ 6∈ σlre(T ).
In this case λI − T is a semi-Fredholm operator and T ∗ has SVEP at λ, so by
[2, Corollary 3.19], i(λI − T ) ≥ 0. Suppose that i(λI − T ) = 0. Since T ∗ has
SVEP at every β 6∈ σw(T ), it follows that T

∗ satisfies Browder’s theorem, and
consequently, T satisfies too. Thus λ ∈ σ(T ) \ σw(T ) = π0(T ). Consequently
by Proposition 4.8, λ ∈ lim infπ0(Tn) ⊆ lim inf σap(Tn).

Now, suppose that i(λI − T ) > 0. If λ 6∈ lim inf σap(Tn), then there exist
ǫ1 > 0 and a increasing sequence of natural numbers n1 < n2 < n3 < · · · such
that B(λ, ǫ1) ∩ σap(Tnk

) = ∅ for all k ∈ N. Since λ 6∈ σap(Tnk
), it follows that
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λI−Tnk
is an injective operator with close range. This implies that λI−Tnk

∈
Φ+(X) and i(λI − Tnk

) ≤ 0. On the other hand, λI − Tnk
→ λI − T , thus

by continuity of index, it follows that i(λI − T ) ≤ 0 which is a contradiction.
That proves λ ∈ lim inf σap(Tn).

Case II: λ ∈ σlre(T ).

By the proof of Case I, we have that φ+(T ) ⊆ lim infσap(Tn). Thus φ+(T ) ⊆

lim infσap(Tn) because lim infσap(Tn) is a closed set. Therefore if λ ∈ φ+(T ),
then λ ∈ lim infσap(Tn).

Let λ 6∈ φ+(T ). By the hypothesis and Lemma 4.15 (note that φ−∞(T ) = ∅),
we get that λ ∈ lim inf σs−F (Tn). But since σs−F (Tn) ⊆ σap(Tn) for all n ∈ N,
it follows that λ ∈ lim inf σap(Tn). Therefore σap is continuous at T . �

Corollary 4.17. If T ∈ B(X) satisfies the hypothesis of Theorem 4.16, then

σ is continuous at T .

Proof. It follows by Theorem 4.16 and Theorem 4.10. �

Example 4.18. The unilateral shift U : ℓ2(N) → ℓ2(N) defined by

U(x) = (0, x1, x2, x3, . . .), x = (x1, x2, x3, . . .),

is a continuity point of σ.

In Theorem 4.16 the set of points λ for which the ball B(λ, ǫ) contains a
component of σlre(T ) for all ǫ > 0 may be reduced. Indeed:

Theorem 4.19. Let T ∈ B(X) such that T ∗ has SVEP at every β 6∈ σlre(T ).

If for each λ ∈ σlre(T ) \ φ+(T ) ∪ π0(T ) and ǫ > 0, the ball B(λ, ǫ) contains a

component of σlre(T ), then σap is continuous at T .

As immediate consequence of Theorem 4.16 and some duality results, we
obtain sufficient conditions for continuity of σsu.

Proposition 4.20. If σap is continuous at T ∗, then σsu is continuous at T .

Proof. Let {Tn}n∈N be a sequence in B(X) such that Tn → T , then T ∗
n → T ∗

and so σap(T
∗
n) → σap(T

∗). Since σap(L
∗) = σsu(L) for every operator L, it

follows that σsu(Tn) → σsu(T ). �

Corollary 4.21. Let T ∈ B(X) such that T has SVEP at every β 6∈ σlre(T ). If

for each λ ∈ σlre(T ) \ φ−(T ) and ǫ > 0, the ball B(λ, ǫ) contains a component

of σlre(T ), then σsu is continuous at T .

Proof. In order to prove this corollary we use Theorem 4.16. First observe
that σap(T

∗) = σsu(T ), σlre(T
∗) = σlre(T ) and φ−(T ) = φ+(T

∗). Take β 6∈
σlre(T

∗), then βI − T is a semi-Fredholm operator and T has SVEP at β, this
implies, by [2, Theorem 3.23], that β is not a cluster point of σap(T ). But,
since σap(T ) = σsu(T

∗) = σap(T
∗∗), it follows that β is not a cluster point of

σap(T
∗∗). Again, from [2, Theorem 3.23], T ∗∗ has SVEP at β.
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Consequently, T ∗∗ has SVEP at every point β 6∈ σlre(T
∗) and its clear that

the other hypotheses of Theorem 4.16 are satisfied. Thus σap is continuous at
T ∗ and, by Proposition 4.20, σsu is continuous at T . �
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