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ON THE SPECTRUM AND FINE SPECTRUM OF THE

UPPER TRIANGULAR DOUBLE BAND MATRIX

U (a0, a1, a2; b0, b1, b2) OVER THE SEQUENCE SPACE ℓp

Nuh Durna∗ and Rabia Kılıç

Abstract. The purpose of this article is to obtain the spectrum, fine
spectrum, approximate point spectrum, defect spectrum and compression

spectrum of the double band matrix U (a0, a1, a2; b0, b1, b2), b0, b1, b2 ̸= 0

on the sequence space ℓp (1 < p < ∞).

1. Introduction

Branches of mathematics are tools for many applied sciences. One of these
tools is spectrum theory. Spectrum theory has a wide area of uses. For exam-
ple, ecology, structural mechanics, quantum mechanics, electrical engineering
etc. In addition, the resolvent set of the band matrix is important in solving
the problems in the application areas mentioned above. As is known, there is
a relationship between matrices and operators. The spectrum of an operator
is a generalization of the concept of the eigenvalue of the matrix corresponding
to the operator. Spectrum and spectrum decompositions of certain operators
are studied on some sequence spaces. These studies mostly include Cesàro,
Hölder, some difference matrix operators. For example, Gonzalez [10], Tripa-
thy and Saikia [13] examined the spectrum of the Cesàro operator. Wenger
[15] examined the spectra of Hölder summability. Yildirim [16] examined on
the spectrum of the Rhaly operators.
We denote the space of all sequences with w. Also, the spaces of bounded,
convergent, null, and limited variation sequences, which are Banach sequence
spaces, are usually denoted by ℓ∞, c, c0, and bv, respectively. By w, we denote
the space of all sequences. Moreover the spaces of all p-absolutely summable
sequences and p-bounded variation sequences are denoted by ℓp, bvp, respec-
tively.
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In this study, the spectral decompositions of the

U(a0, a1, a2; b0, b1, b2) =



a0 b0 0 0 0 0 0 0 0 · · ·
0 a1 b1 0 0 0 0 0 0 · · ·
0 0 a2 b2 0 0 0 0 0 · · ·
0 0 0 a0 b0 0 0 0 0 · · ·
0 0 0 0 a1 b1 0 0 0 · · ·
0 0 0 0 0 a2 b2 0 0 · · ·
...

...
...

...
...

...
. . .

. . .
. . . · · ·


,

(b0, b1 , b2 ̸= 0).

(1)

band matrix over the ℓp sequence space were investigated.

ℓp =

{
x = (xk) ∈ w :

∑
k=1

|xk|p < ∞
}
, 1 < p < ∞ and ∥.∥ℓp =

(∑
k=1

|xk|p
) 1

p

The dual space of the ℓp sequence space is the

ℓq =

{
x = (xk) ∈ w :

∑
k=1

|xk|q < ∞

}
,

1

p
+

1

q
= 1.

The calculations of this matrix in c0 [7] are also available.

2. Spectrum and Fine Spectrum

Let X and Y be the Banach spaces, and T : X → Y be a bounded linear
operator.R (T ), D (T ), B(X) are defined as R (T ) = {y ∈ Y : y = Tx, x ∈ X},
D (T ) = {x ∈ X : y = Tx} and

B(X) = {T : T : X → X bounded linear operator} ,

respectively.
Let T : D (T ) ⊂ X → X be a linear operator where X is a complex normed

space. Let Tζ := T − ζI for T ∈ B(X) and ζ ∈ C where I is the identity

operator. T−1
ζ is the resolvent operator of T .

The resolvent set of T is the set of complex numbers ζ of T such that
(a) T−1

ζ exists,

(b) T−1
ζ is bounded,

(c) T−1
ζ is defined on a set which is dense in X, denoted by ρ(T,X).

Its complement is given by C\ρ(T,X) is called the spectrum of T , denoted
by σ(T,X).

The spectrum σ(T,X) has three discrete decompositions. These are;
the point spectrum σp(T,X) is the set which T−1

λ does not exist,

the continuous spectrum σc(T,X) is the set which the operator T−1
λ is defined

on a dense subspace of X and is unbounded,
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the residual spectrum σr(T,X) is the set which the operator T−1
λ exists, but its

domain of definition is not dense in X than in this case T−1
λ may be bounded

or unbounded.
That’s to say σp(T,X) ∪ σc(T,X) ∪ σr(T,X) = σ(T,X) and σp(T,X) ∩

σc(T,X) = ∅, σp(T,X)∩σr(T,X) = ∅, σr(T,X)∩σc(T,X) = ∅ from definitions.
Many researchers have studied the spectrum and fine spectrum of linear

operators on some sequence spaces. In [8], Fathi studied on the fine spectrum
of generalized upper triangular double-band matrices ∆uv over the sequence
spaces c0 and c. In [11], Srivastava and Kumar studied fine spectrum of the
generalized difference operator ∆v on sequence space ℓ1. In [7], Durna and
Kılıç studied spectra and fine spectra for the upper triangular band matrix
U (a0, a1, a2; b0, b1, b2) over the sequence space c0. In [3], Das studied on the
spectrum and fine spectrum of the upper triangular matrix U(r1, r2; s1, s2) over
the sequence space c0.

Lemma 2.1 (Stieglitz and Tietz [12]). The matrix A = (ank) gives rise to
a bounded linear operator T ∈ (ℓp; ℓp) from ℓp to itself if and only if
(i) supn

∑
k

|ank| < ∞, for each k,

(ii) supk
∑
n
|ank| < ∞, for each n.

Theorem 2.2. U(a0, a1, a2; b0, b1, b2) : ℓp → ℓp is a bounded linear opera-
tor.

Proof. The linearity of U(a0, a1, a2; b0, b1, b2) is clear, so we omit that proof.
Now we consider boundedness of operator. If the conditions of lemma 2.1 are
calculated for the U(a0, a1, a2; b0, b1, b2) operator, we obtain

sup
n

∑
k

|ank| = max {|a0|+ |b0| , |a1|+ |b1| , |a2|+ |b2|}

sup
k

∑
n

|ank| = max {|a1|+ |b0| , |a2|+ |b1| , |a0|+ |b2|} .

Thus since supn
∑
k

|ank| < ∞ and supk
∑
n
|ank| < ∞, we get (xn) ∈ ℓp. Hence

U(a0, a1, a2; b0, b1, b2) is bounded.

Lemma 2.3 (Golberg [9, p.59]). T has a dense range if and only if T ∗ is
1-1.

Lemma 2.4 (Golberg [9, p.60]). T−1 is bounded if and only if T ∗ is onto.

Notation. During this paper, it will be denoted as

S = {ζ ∈ C : |ζ − a0| |ζ − a1| |ζ − a2| ≤ |b0| |b1| |b2|} .

Hence the boundary of S and the interior of S will be denoted by ∂S, S̊
respectively.

Theorem 2.5. σp(U (a0, a1, a2; b0, b1, b2) , ℓp) = S̊.
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Proof. Let ζ be an eigenvalue of the operator U (a0, a1, a2; b0, b1, b2). Then
there exists x ̸= θ = (0, 0, 0, ...) in ℓp such that U (a0, a1, a2; b0, b1, b2)x = ζx.
Then we obtain

x3n = dnx0,

x3n+1 =
ζ − a0
b0

dnx0,

x3n+2 =
(ζ − a0) (ζ − a1)

b0b1
dnx0,

, n ≥ 0

where d =
(ζ − a0) (ζ − a1) (ζ − a2)

b0b1b2
. Thus we get

∞∑
n=0

|x3n|p =

∞∑
n=0

|dnx0|p = |x0|p
∞∑

n=0

|dn|p

∞∑
n=0

|dn|p < ∞ if and only if |d| < 1.

Thus (x3n) ∈ ℓp if and only if |d| < 1. Similarly (x3n+1) and (x3n+2) are also
convergent. Hence the subsequences (x3n) , (x3n+1) , (x3n+2) of x = (xn) are in
ℓp if and only if |ζ − a0| |ζ − a1| |ζ − a2| < |b0| |b1| |b2|. Thus x = (xn) ∈ ℓp if
and only if |ζ − a0| |ζ − a1| |ζ − a2| < |b0| |b1| |b2|. So

σp(U (a0, a1, a2; b0, b1, b2) , ℓp) = S̊.

Let T : ℓp 7−→ ℓp be a bounded linear operator represented by a matrix A,
then it is known that the adjoint operator T ∗ : ℓ∗p 7−→ ℓ∗p is a bounded linear

operator and At is its matrix representation. Where the dual space ℓ∗p of ℓp is

isomorphic to lq with 1
p + 1

q = 1.

Theorem 2.6. σp(U (a0, a1, a2; b0, b1, b2)
∗
, ℓ∗p ≈ lq) = ∅.

Proof. It is calculated similarly to the proof of Theorem 2 in [7]

Theorem 2.7. σr(U (a0, a1, a2; b0, b1, b2) , ℓp) = ∅.

Proof. Owing to σr(A,X) = σp(A
∗, X∗)\σp(A,X) proof is clear.

Theorem 2.8. σ(U (a0, a1, a2; b0, b1, b2) , ℓp) = S.

Proof. First, we prove that (U (a0, a1, a2; b0, b1, b2) − λI)−1 exists and is
in (ℓp, ℓp) for λ /∈ {ζ ∈ C : |ζ − a0| |ζ − a1| |ζ − a2| ≤ |b0| |b1| |b2|} and then we
have to show that the operator (U (a0, a1, a2; b0, b1, b2) − ζI) is not invertible
for |ζ − a0| |ζ − a1| |ζ − a2| > |b0| |b1| |b2| .

Let λ /∈ {ζ ∈ C : |ζ − a0| |ζ − a1| |ζ − a2| ≤ |b0| |b1| |b2|}. Since bn ̸= 0, n =
0, 1, 2 we get an ̸= ζ, n = 0, 1, 2. Hence, since (U (a0, a1, a2; b0, b1, b2) − λI) is
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a upper triangle, (U (a0, a1, a2; b0, b1, b2)− λI)−1 exists.


a0 − λ b0 0 0 · · ·

0 a1 − λ b1 0 · · ·
0 0 a2 − λ b2 · · ·
0 0 0 a0 − λ · · ·
...

...
...

...
. . .




c00 c01 c02 c03 · · ·
0 c11 c12 c13 · · ·
0 0 c22 c23 · · ·
0 0 0 c33 · · ·
...

...
...

...
. . .



=


1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .



then we get

cnk =


0 , n > k
k−n−1∏
v=0

bk−1−v

ak−v−λ , n < k

1
an−λ , n = k

Now, we have to show (U (a0, a1, a2; b0, b1, b2)− λI)−1 ∈ (ℓp, ℓp) .

Firstly, if arrange the

∣∣∣∣k−n−1∏
v=0

(−1)
k−n bk−1−v

ak−v−λ

∣∣∣∣ multiplication then we have

∣∣∣∣∣
k−n−1∏
v=0

(−1)
k−n bk−1−v

ak−v − λ

∣∣∣∣∣ = Bt

∣∣qk−n
∣∣

where q = b0b1b2
(a0−λ)(a1−λ)(a2−λ) and

Bt =



k = 3i k = 3i− 1 k = 3i− 2

n = 3j 1
∣∣∣a0−λ

b2

∣∣∣ ∣∣∣ (a0−λ)(a2−λ)
b2b1

∣∣∣
n = 3j − 1

∣∣∣ b2
a0−λ

∣∣∣ 1
∣∣∣a2−λ

b1

∣∣∣
n = 3i− 2

∣∣∣ b2b1
(a0−λ)(a2−λ)

∣∣∣ ∣∣∣ b1
a2−λ

∣∣∣ 1
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So from the 1st condition of Lemma 2.1 we get, for each k

sup
n

∑
k

|cnk| = sup
n

∑
k

∣∣∣∣∣ 1

an − λ

k−n−1∏
v=0

(−1)
k−n bk−1−v

ak−v − λ

∣∣∣∣∣(2)

≤ 2
max
m=0

∣∣∣∣ 1

am − λ

∣∣∣∣ sup
n

∑
k

∣∣∣∣∣
k−n−1∏
v=0

(−1)
k−n bk−1−v

ak−v − λ

∣∣∣∣∣
= Bt

2
max
m=0

∣∣∣∣ 1

am − λ

∣∣∣∣ sup
n

∑
k

|q|k−n
(3)

= Bt
2

max
m=0

∣∣∣∣ 1

am − λ

∣∣∣∣ sup
n

|q|−n
∑
k

|q|k(4)

= Bt
2

max
m=0

∣∣∣∣ 1

am − λ

∣∣∣∣ sup
n

1

|q|n (1− |q|)
(5)

therefore, since

sup
n

1

|q|n (1− |q|)
=

{ 1
1−|q| |q| < 1

∞ |q| ≥ 1

we get

(6) sup
n

∑
k

|cnk| =
{

convergent , |q| < 1
divergent , |q| ≥ 1

.

From the 2st condition of Lemma 2.1 we get

sup
k

∑
n

|cnk| = sup
k

∑
n

∣∣∣∣∣ 1

an − λ

k−n−1∏
v=0

(−1)
k−n bk−1−v

ak−v − λ

∣∣∣∣∣(7)

≤ 2
max
m=0

∣∣∣∣ 1

am − λ

∣∣∣∣ sup
k

∑
n

∣∣∣∣∣
k−n−1∏
v=0

(−1)
k−n bk−1−v

ak−v − λ

∣∣∣∣∣
= Bt

2
max
m=0

∣∣∣∣ 1

am − λ

∣∣∣∣ sup
k

∑
n

|q|k−n
(8)

= Bt
2

max
m=0

∣∣∣∣ 1

am − λ

∣∣∣∣ sup
k

|q|k
∑
n

|q|−n
(9)

= Bt
2

max
m=0

∣∣∣∣ 1

am − λ

∣∣∣∣ sup
k

|q|k
(
1− 1

|q|k+1

1− |q|

)
(10)

=
Bt max2m=0

∣∣∣ 1
am−λ

∣∣∣
1− |q|

sup
k

|q|k+1 − 1

|q|
(11)
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Therefore since

sup
i

|q|i+1 − 1

|q|
=

{
Bt max2

m=0| 1
am−λ |

1−|q| , |q| < 1

∞ , |q| ≥ 1

we get

(12) sup
k

∑
n

|cnk| =
{

convergent , |q| < 1
divergent , |q| ≥ 1

Hence (U (a0, a1, a2; b0, b1, b2)− λI)−1 ∈ (ℓp, ℓp) if and only if |q| < 1 from (6)
and (12). Thus λ is spectral value while

λ ∈ {ζ ∈ C : |ζ − a0| |ζ − a1| |ζ − a2| ≤ |b0| |b1| |b2|} .
So σ(U (a0, a1, a2; b0, b1, b2) , ℓp) = S.

Theorem 2.9. σc(U (a0, a1, a2; b0, b1, b2) , ℓp) = ∂S

Proof. Owing to σ(T,X) is the disjoint union of σp(T,X), σr(T,X) and
σc(T,X), thence

σc(T,X) = σ(T,X)\ (σp(T,X) ∪ σr(T,X)) .

By Theorem 2.5 and Theorem 2.7 we get required result.

3. Subdivision of the Spectrum

The spectrum σ(T,X) is partitioned into three sets which are not necessarily
disjoint as follows:

a) The set σap(T,X) := {ζ ∈ C :there exists a Weyl sequence for T − ζI}
the approximate point spectrum of T . Herein if there exists a sequence (xn)
in X such that ∥xn∥ = 1 and ∥Txn∥ → 0 as n → ∞ then (xn) is called Weyl
sequence for T .

b)The set σδ(T,X) := {ζ ∈ σ(T,X) : T − ζI is not surjective} is called
defect spectrum of T .

c)The set σco(T,X) = {ζ ∈ C : R(T − ζI) ̸= X} is called compression
spectrum in the literature.

Proposition 3.1 ([1], p. 28). The spectrum and the subspectrum of an
operator T ∈ B(X) and its adjoint T ∗ ∈ B(X∗) are related by the following
relations:
(a) σ(T ∗) = σ(T ),
(b) σc(T

∗) ⊆ σap(T ),
(c) σap(T

∗) = σδ(T ),
(d) σδ(T

∗) = σap(T ),
(e) σp(T

∗) = σco(T ),
(f) σco(T

∗) ⊇ σp(T ),
(g) σ(T ) = σap(T ) ∪ σp(T

∗) = σp(T ) ∪ σap(T
∗).
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Goldberg’s Classification of Spectrum

If T ∈ B(X), then there are three cases for R(T ):

(I) R(T ) = X, (II) R(T ) = X, but R(T ) ̸= X, (III) R(T ) ̸= X
and three cases for T−1:

(1) T−1 exists, bounded, (2) T−1 exists, unbounded, (3) T−1 doesn’t exist.

If these cases are combined in all possible ways, nine different states are
created. These are labelled by: I1, I2, I3, II1, II2, II3, III1, III2, III3 (see
[9]).

σ(T,X) can be divided into subdivisions I2σ(T,X) = ∅, I3σ(T,X), II2σ(T,X),
II3σ(T,X), III1σ(T,X), III2σ(T,X), III3σ(T,X). For example, if Tζ =
ζI − T is in a given state, III1 (say), then we write ζ ∈ III1σ(T,X).

A table was created in [4] with the help of the above definitions. According
to this table, some results are as follows;
a) σp(T,X) = I3σ(T,X) ∪ II3σ(T,X) ∪ III3σ(T,X),
b) σr(T,X) = III1σ(T,X) ∪ III2σ(T,X),
c) σap(T,X) = σ(T,X)\III1σ(T,X),
d) σδ(T,X) = σ(T,X)\I3σ(T,X),
e) σco(T,X) = III1σ(T,X) ∪ III2σ(T,X) ∪ III3σ(T,X).

In chapter 2, decompositions defined by Goldberg were examined. In this
section, the definitions given above will be examined. Some studies on this
subject are as follows: Subdivisions of spectra for factorable matrices in [4],
Subdivisions of spectra for generalized difference operator in [2] were examined.
In [14], the fine spectrum of the upper triangular matrix U(r, 0, 0, s) over the
sequence spaces c0 and c was studied. In [5] partition of the spectra for the
generalized difference operator B(r, s) on the sequence space cs was studied, in
[6], subdivision of spectra for some lower triangular double-band matrices as
operators on c0 was studied.

Theorem 3.2. Iσ(U (a0, a1, a2; b0, b1, b2) , ℓp) = ∅.

Proof. For ζ ∈ Iσ(U (a0, a1, a2; b0, b1, b2) , ℓp), we should show that
U (a0, a1, a2; b0, b1, b2)− ζI is onto. Let y = (yn) ∈ ℓp be such that

(U (a0, a1, a2; b0, b1, b2)− ζI)x = y

for x = (xn). Then

(a0 − ζ)x0 + b0x1 = y0

(a1 − ζ)x1 + b1x2 = y1

(a2 − ζ)x2 + b2x3 = y2
...

(an − ζ)xn + bnxn+1 = yn
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Calculating xk, we get
(13)

xn =
1

bn−1

(
yn−1 +

n−2∑
k=0

yk

n−k−1∏
u=1

ζ − an−u

bn−u−1

)
+x0

n∏
u=1

ζ − an−u

bn−u
, n = 1, 2, 3, . . .

We have to show that x = (xk) ∈ ℓp.
1
p + 1

q = 1 and setting

d :=
(ζ − a0) (ζ − a1) (ζ − a2)

b0b1b2
,

since
n−k−1∏
u=1

ζ − an−u

bn−u−1
= Md

k−n−1

3 and
n∏

u=1

ζ − an−u

bn−u
= Nd

n
3 , where

M =


ζ − a2
b1

, n− k = 3t

1 , n− k = 3t− 1
b2

ζ − a0
, n− k = 3t− 2

andN =


1 , n = 3t
b1

ζ − a1
, n = 3t− 1

b1
ζ − a1

b2
ζ − a2

, n = 3t− 2,

are constants then we get

xn =
1

bn−1
yn−1 +

1

bn−1

n−2∑
k=0

ykMd
k−n−1

3 + x0Nd
n
3 , n = 1, 2, 3, . . . .

Now suppose y = (en−1) = (0, 0, . . . , 0, 1, 0, . . .) then we get

xn =
1

bn−1
(1 +M) + x0Nd

n
3

xn =
1

bn−1
(1 +M) + x0Nd3 −→ 1

limn−→∞ bn−1
(1 +M) ̸= 0.

Hence
∑

|xn|p divergent so (xn) /∈ ℓp. Therefore ζ doesn’t satisfies Golberg’s
condition I. So Iσ(U (a0, a1, a2; b0, b1, b2) , ℓp) = ∅.

Corollary 3.3. II3σ(U(a0, a1, a2; b0, b1, b2), ℓp) = S̊.

Proof. (U(a0, a1, a2; b0, b1, b2)− ζI)
∗
is injective from Theorem 2.6. So from

Lemma 2.3 U(a0, a1, a2; b0, b1, b2)ζ has a dense range. Thus for

ζ ∈ σ(U(a0, a1, a2; b0, b1, b2), ℓp),

ζ ∈ Iσ(U(a0, a1, a2; b0, b1, b2), ℓp) or ζ ∈ IIσ(U(a0, a1, a2; b0, b1, b2), ℓp).
ζ ∈ IIσ(U(a0, a1, a2; b0, b1, b2), ℓp) is gotten from Theorem 3.2.
Also, if |ζ − a0| |ζ − a1| |ζ − a2| < |b0| |b1| |b2|, then

ζ ∈ 3σ(U(a0, a1, a2; b0, b1, b2), ℓp)

from Theorem 3.2. Hence II3σ(U(a0, a1, a2; b0, b1, b2), ℓp) = S̊

Corollary 3.4.

III1σ(U(a0, a1, a2; b0, b1, b2), ℓp) = III2σ(U(a0, a1, a2; b0, b1, b2), ℓp) = ∅.
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Proof. Owing to σr(T,X) = III1σ(T,X)∪III2σ(T,X), the required result
is obtained by Theorem 2.7.

Corollary 3.5.

I3σ(U(a0, a1, a2; b0, b1, b2), ℓp) = III3σ(U(a0, a1, a2; b0, b1, b2), ℓp) = ∅.

Proof. Owing to σp(T,X) = I3σ(T,X) ∪ II3σ(T,X) ∪ III3σ(T,X), the
required result is obtained by Theorem 2.5 and Corollary 3.3.

Theorem 3.6. The following spectral decompositions are valid:

(a)

σap(U(a0, a1, a2; b0, b1, b2), ℓp)

= {ζ ∈ C : |ζ − a0| |ζ − a1| |ζ − a2| ≤ |b0| |b1| |b2|} .

(b)

σδ(U(a0, a1, a2; b0, b1, b2), ℓp)

= {ζ ∈ C : |ζ − a0| |ζ − a1| |ζ − a2| ≤ |b0| |b1| |b2|} .

(c) σco(U(a0, a1, a2; b0, b1, b2), ℓp) = ∅.

Proof. (a) Owing to σap(T,X) = σ(T,X)\III1σ(T,X),

σap(U(a0, a1, a2; b0, b1, b2), ℓp)

= {ζ ∈ C : |ζ − a0| |ζ − a1| |ζ − a2| ≤ |b0| |b1| |b2|}

from Corollary 3.4.

(b) Owing to

σδ(T,X) = σ(T,X)\I3σ(T,X),

using Theorem 2.8 and 3.2, the required result is gotten.

(c) By Proposition 3.1 (e), we obtain

σp(T
∗, X∗) = σco(T,X).

Using Theorem 2.6, the required result is gotten.

Corollary 3.7. The following spectral decompositions are valid:

(a)

σap(U(a0, a1, a2; b0, b1, b2)
∗, ℓ∗p

∼= lq)

= {ζ ∈ C : |ζ − a0| |ζ − a1| |ζ − a2| ≤ |b0| |b1| |b2|} .

(b)

σδ(U(a0, a1, a2; b0, b1, b2)
∗, ℓ∗p

∼= lq)

= {ζ ∈ C : |ζ − a0| |ζ − a1| |ζ − a2| ≤ |b0| |b1| |b2|} .
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Proof. By Proposition 3.1 (c) and (d), we obtain

σap(U(a0, a1, a2; b0, b1, b2)
∗, ℓ∗p

∼= lq) = σδ(U(a0, a1, a2; b0, b1, b2), ℓp)

and

σδ(U(a0, a1, a2; b0, b1, b2)
∗, ℓ∗p

∼= lq) = σap(U(a0, a1, a2; b0, b1, b2), ℓp).

from Theorem 3.6 (a) and (b), the required results are gotten.

4. Results

We can generalize our operator

U(a0, a1, . . . , an−1; b0, b1, . . . , bn−1)

=



a0 b0 0 0 0 0 0 0 0 · · ·
0 a1 b1 0 0 0 0 0 0 · · ·

0 0
. . .

. . .
. . . 0 0 0 0 · · ·

0 0 0 an−1 bn−1 0 0 0 0 · · ·
0 0 0 0 a0 b0 0 0 0 · · ·
0 0 0 0 0 a1 b1 0 0 · · ·
...

...
...

...
...

...
. . .

. . .
. . . · · ·


,

where b0, b1, . . . , bn−1 ̸= 0.
Similar to the results in the previous sections, the spectrum and fine spec-

trum of the n-repeated double band matrix are as follows.

Theorem 4.1. The following are valid, where

M =

{
ζ ∈ C :

n−1∏
k=0

∣∣∣∣ζ − ak
bk

∣∣∣∣ ≤ 1

}
,

M̊ is the interior of the set M , and ∂M is the boundary of the set M :

1. σp(U(a0, a1, . . . , an−1; b0, b1, . . . , bn−1), ℓp) = M̊ .
2. σp(U(a0, a1, . . . , an−1; b0, b1, . . . , bn−1)

∗, ℓ∗p
∼= ℓq) = ∅.

3. σr(U(a0, a1, . . . , an−1; b0, b1, . . . , bn−1), ℓp) = ∅.
4. σc(U(a0, a1, . . . , an−1; b0, b1, . . . , bn−1), ℓp) = ∂M .
5. σ(U(a0, a1, . . . , an−1; b0, b1, . . . , bn−1), ℓp) = M.
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