• 제목/요약/키워드: approximate point spectrum

검색결과 18건 처리시간 0.024초

ON p-HYPONORMAL OPERATORS ON A HILBERT SPACE

  • Cha, Hyung-Koo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제5권2호
    • /
    • pp.109-114
    • /
    • 1998
  • Let H be a separable complex H be a space and let (equation omitted)(H) be the *-algebra of all bounded linear operators on H. An operator T in (equation omitted)(H) is said to be p-hyponormal if ($T^{\ast}T)^p - (TT^{\ast})^{p}\geq$ 0 for 0 < p < 1. If p = 1, T is hyponormal and if p = $\frac{1}{2}$, T is semi-hyponormal. In this paper, by using a technique introduced by S. K. Berberian, we show that the approximate point spectrum $\sigma_{\alpha p}(T) of a pure p-hyponormal operator T is empty, and obtains the compact perturbation of T.

  • PDF

CONTINUITY OF APPROXIMATE POINT SPECTRUM ON THE ALGEBRA B(X)

  • Sanchez-Perales, Salvador;Cruz-Barriguete, Victor A.
    • 대한수학회논문집
    • /
    • 제28권3호
    • /
    • pp.487-500
    • /
    • 2013
  • In this paper we provide a brief introduction to the continuity of approximate point spectrum on the algebra B(X), using basic properties of Fredholm operators and the SVEP condition. Also, we give an example showing that in general it not holds that if the spectrum is continuous an operator T, then for each ${\lambda}{\in}{\sigma}_{s-F}(T){\setminus}\overline{{\rho}^{\pm}_{s-F}(T)}$ and ${\in}$ > 0, the ball $B({\lambda},{\in})$ contains a component of ${\sigma}_{s-F}(T)$, contrary to what has been announced in [J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity II, Integral Equations Operator Theory 4 (1981), 459-503] page 462.

ON THE SPECTRUM AND FINE SPECTRUM OF THE UPPER TRIANGULAR DOUBLE BAND MATRIX U (a0, a1, a2; b0, b1, b2) OVER THE SEQUENCE SPACE ℓp

  • Nuh Durna;Rabia Kilic
    • 호남수학학술지
    • /
    • 제45권4호
    • /
    • pp.598-609
    • /
    • 2023
  • The purpose of this article is to obtain the spectrum, fine spectrum, approximate point spectrum, defect spectrum and compression spectrum of the double band matrix U (a0, a1, a2; b0, b1, b2), b0, b1, b2≠0 on the sequence space ℓp (1 < p < ∞).

ON THE SEMI-HYPONORMAL OPERATORS ON A HILBERT SPACE

  • Cha, Hyung-Koo
    • 대한수학회논문집
    • /
    • 제12권3호
    • /
    • pp.597-602
    • /
    • 1997
  • Let H be a separable complex Hilbert space and L(H) be the *-algebra of all bounded linear operators on H. For $T \in L(H)$, we construct a pair of semi-positive definite operators $$ $\mid$T$\mid$_r = (T^*T)^{\frac{1}{2}} and $\mid$T$\mid$_l = (TT^*)^{\frac{1}{2}}. $$ An operator T is called a semi-hyponormal operator if $$ Q_T = $\mid$T$\mid$_r - $\mid$T$\mid$_l \geq 0. $$ In this paper, by using a technique introduced by Berberian [1], we show that the approximate point spectrum $\sigma_{ap}(T)$ of a semi-hyponomal operator T is empty.

  • PDF

On the Fine Spectrum of the Lower Triangular Matrix B(r, s) over the Hahn Sequence Space

  • Das, Rituparna
    • Kyungpook Mathematical Journal
    • /
    • 제57권3호
    • /
    • pp.441-455
    • /
    • 2017
  • In this article we have determined the spectrum and fine spectrum of the lower triangular matrix B(r, s) on the Hahn sequence space h. We have also determined the approximate point spectrum, the defect spectrum and the compression spectrum of the operator B(r, s) on the sequence space h.

CONTROLLABILITY FOR SEMILINEAR CONTROL SYSTEMS WITH ISOLATED SPECTRUM POINTS

  • JEONG JIN-MUN
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.557-567
    • /
    • 2006
  • This paper proves the invariability of reachable sets for the linear control system with positive isolated spectrum points in case where the principal operator generates $C_0-semigroup$ and derives the approximate controllability for the semilinear control system by using spectral operators with respect to isolated spectrum points.

A NOTE ON THE ESSENTIAL SPECTRUM OF AN IRREDUCIBLE P-HYPONORMAL OPERATOR

  • Lee, Kwang-Il;Cha, Hyung-Koo
    • East Asian mathematical journal
    • /
    • 제17권1호
    • /
    • pp.87-92
    • /
    • 2001
  • In this paper, we have the extended result of Bunce's theorem. And we show that if T is an irreducible p-hyponormal operator such that T*T-TT* is compact, then ${\sigma}_{ap}(T)={\sigma}_e(T)$ and ${\sigma}_p({\phi}(T))={\sigma}_e({\phi}(T))$.

  • PDF

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.

WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS

  • Cao, Xiaohong
    • 대한수학회지
    • /
    • 제45권3호
    • /
    • pp.771-780
    • /
    • 2008
  • Let $M_C=\(\array{A&C\\0&B}\)$ be a $2{\times}2$ upper triangular operator matrix acting on the Hilbert space $H{\bigoplus}K\;and\;let\;{\sigma}_w(\cdot)$ denote the Weyl spectrum. We give the necessary and sufficient conditions for operators A and B which ${\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w\(\array{A&C\\0&B}\)\;or\;{\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w(A){\cup}{\sigma}_w(B)$ holds for every $C{\in}B(K,\;H)$. We also study the Weyl's theorem for operator matrices.