• Title/Summary/Keyword: antifungal chitinase

Search Result 64, Processing Time 0.02 seconds

Biocontrol of Damping-Off(Rhizoctonia solani) in Cucumber by Trichoderma asperellum T-5 (Trichoderma asperellum T-5를 이용한 오이 모잘록병(Rhizoctonia solani)의 생물학적 제어)

  • Ryu, Ji-Yeon;Jin, Rong-De;Kim, Yong-Woong;Lee, Hyang-Burm;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.185-194
    • /
    • 2006
  • A fungal strain of Trichoderma having strong chitinolytic activity was isolated from field soil enriched with crabshell for several years. Based on 5.8S rRNA, partial 18S, 28S rRNA genes, ITS1, ITS2 sequence analysis and morphological characteristics, the fungus was identified as Trichoderma asperellum and named as Trichoderma asperellum T-5 (TaT-5). The fungus released lytic enzymes such as chitinase and ${\beta}$-1, 3-glucanse, and produced six antifungal substances in chitin broth medium. To demonstrate the protective effect of TaT-5 against damping-off in cucumber plant caused by Rhizoctonia solani, TaT-5 culture broth (TA), chitin medium (CM) and distilled water (DW) were applied to each pot at 10 days after sowing, respectively. Then, the homogenized hyphae of R. solani were infected to each pot at 1 week after TaT-5 inoculation. During experimental period, fresh weight of shoot and root in cucumber plant more increased at TA treatment compared to other treatments. PR-proteins (${\beta}$-1, 3-glucanase and chitinase) activities in cucumber leaves markedly increased at CM and DW treatments, but the activity slightly increased and then decreased at TA treatment at 3 days after infection of R. solani. The activity of PR-proteins activities in cucumber roots at all treatments decreased with time where the degree of decrement was more alleviated at TA treatment than CM and DW. These results suggest that the lytic enzymes (chitinase and ${\beta}$-1, 3-glucanse) and antifungal substances produced by TaT-5 can reduce the pathogenic attack by R. solani in cucumber plants.

Isolation and Identification of Antifungal Compounds from $Bacillus$ $subtilis$ C9 Inhibiting the Growth of Plant Pathogenic Fungi

  • Islam, Md. Rezuanul;Jeong, Yong-Tae;Lee, Yong-Se;Song, Chi-Hyun
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • Antagonistic microorganisms against $Rhizoctonia$ $solani$ were isolated and their antifungal activities were investigated. Two hundred sixteen bacterial isolates were isolated from various soil samples and 19 isolates were found to antagonize the selected plant pathogenic fungi with varying degrees. Among them, isolate C9 was selected as an antagonistic microorganism with potential for use in further studies. Treatment with the selected isolate C9 resulted in significantly reduced incidence of stem-segment colonization by $R.$ $solani$ AG2-2(IV) in Zoysia grass and enhanced growth of grass. Through its biochemical, physiological, and 16S rDNA characteristics, the selected bacterium was identified as $Bacillus$ $subtilis$ subsp. $subtilis$. Mannitol (1%) and soytone (1%) were found to be the best carbon and nitrogen sources, respectively, for use in antibiotic production. An antibiotic compound, designated as DG4, was separated and purified from ethyl acetate extract of the culture broth of isolate C9. On the basis of spectral data, including proton nuclear magneric resonance ($^1H$ NMR), carbon nuclear magneric resonance ($^{13}C$ NMR), and mass analyses, its chemical structure was established as a stereoisomer of acetylbutanediol. Application of the ethyl acetate extract of isolate C9 to several plant pathogens resulted in dose-dependent inhibition. Treatment with the purified compound (an isomer of acetylbuanediol) resulted in significantly inhibited growth of tested pathogens. The cell free culture supernatant of isolate C9 showed a chitinase effect on chitin medium. Results from the present study demonstrated the significant potential of the purified compound from isolate C9 for use as a biocontrol agent as well as a plant growth promoter with the ability to trigger induced systemic resistance of plants.

Synergistic Interactions Between Chitinase ChiCW and Fungicides Against Plant Fungal Pathogens

  • Huang, Chien-Jui;Chen, Chao-Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.784-787
    • /
    • 2008
  • Antifungal activity of ChiCW and synergistic interactions between ChiCW with fungicides were investigated. Conidial germinations of phytopathogenic fungi, Alternaria brassicicola, Botrytis elliptica, and Colletotrichum gloeosporioides, were inhibited by ChiCW but A. longipes was not. In addition, ChiCW showed synergistic effect with fungicides Switch (cyprodinil+fludioxonil) and tebuconazole to inhibit fungal conidial germinations. The level of synergism of ChiCW with tebuconazole was higher than that with Switch. The results indicate that ChiCW may exhibit a higher level of synergism with fungicides that have a primary effect upon membranes.

Enhancement of Biocontrol Activity of Serratia plymuthica A21 -4 Toward Phytophthora Blight of Pepper by Amendment of Nutritional Condition

  • Shen, Shun-Shan;Kim, Chang-Guk;Park, Chang-Seuk
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.96.1-96
    • /
    • 2003
  • Serratia plymuthim A21-4 strongly inhibits the mycelial growth, zoospore formation, and cystospore germination of Phytophthor spp and Pythium species. The bacterial isolate produced antifungal substance and chitinase. The bacteria also enhanced to plant growth remarkably in low nutritional condition. The application of cell suspension of A21-4 to pepper seedlings in greenhouse experiments and soil drenching in farmer's field was proved successfully to control the phythophthora blight of pepper. For the effective control, however, relatively high density of cell number(10$\^$9/cfu/$m\ell$) is required. Density effect was similar in plant growth promoting activity of A21-4. Though this investigation we improved the problem with changes of culture condition of bacteria and some nutritional amendment.

  • PDF

Biocontrol Potential of Streptomyces griseus H7602 Against Root Rot Disease (Phytophthora capsici) in Pepper

  • Nguyen, Xuan-Hoa;Naing, Kyaw-Wai;Lee, Young-Seong;Tindwa, Hamisi;Lee, Geon-Hyoung;Jeong, Byoung-Kon;Ro, Hee-Myeong;Kim, Sang-Jun;Jung, Woo-Jin;Kim, Kil-Yong
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.282-289
    • /
    • 2012
  • The root rot of pepper (Capsicum annuum L.) caused by Phytophthora capsici is one of the most important diseases affecting this crop worldwide. This work presents the evaluation of the capacity of Streptomyces griseus H7602 to protect pepper plants against Phytophthora capsici and establishes its role as a biocontrol agent. In this study, we isolated an actinomycete strain H7602 from rhizosphere soil, identified it as Streptomyces griseus by 16S rRNA analysis and demonstrated its antifungal activity against various plant pathogens including P. capsici. H7602 produced lytic emzymes such as chitinase, ${\beta}$-1,3-glucanase, lipase and protease. In addition, crude extract from H7602 also exhibited destructive activity toward P. capsici hyphae. In the pot trial, results showed the protective effect of H7602 against pepper from P. capsici. Application of H7602 culture suspension reduced 47.35% of root mortality and enhanced growth of pepper plants for 56.37% in fresh root and 17.56% g in fresh shoot as compared to control, resulting in greater protection to pepper plants against P. capsici infestation. Additionally, the enzymatic activities, chitinase and ${\beta}$-1,3-glucanase, were higher in rhizosphere soil and roots of pepper plants treated with H7602 than other treated plants. Therefore, our results indicated a clear potential of S. griseus H7602 to be used for biocontrol of root rot disease caused by P. capsici in pepper.

Biocontrol of pepper diseases by Lysobacter enzymogenes LE429 and Neem Oil (Lysobacter enzymogenes LE429와 Neem oil을 이용한 고추 병해의 생물학적 방제)

  • Han, Thazin;Cho, Min-Young;Lee, Yong-Seong;Park, Yun-Seok;Park, Ro-Dong;Nam, Yi;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.490-497
    • /
    • 2010
  • A chitinolytic bacterium having a strong antagonistic activity against various pathogens including Phytophtora capsici was isolated from rhizosphere soil, and identified as Lysobacter enzymogenes (named as LE429) based on 16S rRNA gene sequence analysis. This strain produced a number of substances such as chitinase, ${\beta}-1$, 3-glucanase, lipase, protease, gelatinase and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, sephadex LH-20 column chromatography and HPLC. The purified compound was identified as phenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. In field experiment, pepper plants were treated by the strain LE429 culture (CB), neem oil solution (NO), combination (CB+NO) or control (CON). Plant height and number of branches, flowers and pods of pepper plant in CB treatment were generally highest, and followed by CB+NO, CON and NO. The fungal pathogens were strongly inhibited, while several insect pests were discovered in CB treatment. Any insect pests were not found, while all fungal pathogens tested were not suppressed in NO treatment. However, in CB+NO treatment, non incidence of fungal pathogens and insect pests were found. The strain LE429 producing secondary metabolites with neem oil should be a potential agent to control fungal diseases and insect pests.

Characterization of a Phenazine and Hexanoyl Homoserine Lactone Producing Pseudomonas aurantiaca Strain PB-St2, Isolated from Sugarcane Stem

  • Mehnaz, Samina;Baig, Deeba Noreen;Jamil, Farrukh;Weselowski, Brian;Lazarovits, George
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1688-1694
    • /
    • 2009
  • A novel strain of fluorescent pseudomonad (PB-St2) was isolated from surface-sterilized stems of sugarcane grown in Pakistan. The bacterium was identified as Pseudomonas aurantiaca on the basis of 16S rRNA gene sequence analysis and results from physiological and biochemical characteristics carried out with API50 CH and QTS 24 bacterial identification kits. Assays using substrate-specific media for enzymes revealed lipase and protease activities but cellulase, chitinase, or pectinase were not detected. The bacterium was unable to solubilize phosphate or produce indole acetic acid. However, it did produce HCN, siderophores, and homoserine lactones. In dual culture assays on agar, the bacterium showed antifungal activity against an important pathogen of sugarcane in Pakistan, namely Colletotrichum falcatum, as well as for pathogenic isolates of Fusarium oxysporium and F. lateritium but not against F. solani. The antifungal metabolites were identified using thin-layer chromatography, UV spectra, and MALDI-TOFF spectra and shown to be phenazine-1-carboxylic acid (PCA), 2-hydroxyphenazine (2-OH-PHZ), and N-hexanoyl homoserine lactone (HHL) (assessed using only TLC data). The capacity of this bacterium to produce HCN and 2-OH-PHZ, as well as to inhibit the growth of C. falcatum, has not been previously reported.

Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea

  • Han, Joon-Hee;Shim, Hongsik;Shin, Jong-Hwan;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.165-175
    • /
    • 2015
  • Anthracnose is a fungal disease caused by Colletotrichum species that is detrimental to numerous plant species. Anthracnose control with fungicides has both human health and environmental safety implications. Despite increasing public concerns, fungicide use will continue in the absence of viable alternatives. There have been relatively less efforts to search antagonistic bacteria from mudflats harboring microbial diversity. A total of 420 bacterial strains were isolated from mudflats near the western sea of South Korea. Five bacterial strains, LB01, LB14, HM03, HM17, and LB15, were characterized as having antifungal properties in the presence of C. acutatum and C. gloeosporioides. The three Bacillus atrophaeus strains, LB14, HM03, and HM17, produced large quantities of chitinase and protease enzymes, whereas the B. amyloliquefaciens strain LB01 produced protease and cellulase enzymes. Two important antagonistic traits, siderophore production and solubilization of insoluble phosphate, were observed in the three B. atrophaeus strains. Analyses of disease suppression revealed that LB14 was most effective for suppressing the incidence of anthracnose symptoms on pepper fruits. LB14 produced antagonistic compounds and suppressed conidial germination of C. acutatum and C. gloeosporioides. The results from the present study will provide a basis for developing a reliable alternative to fungicides for anthracnose control.

Induction of Defense Related Enzymes and Pathogenesis Related Proteins in Pseudomonas fluorescens-Treated Chickpea in Response to Infection by Fusarium oxysporum f. sp. ciceri

  • Saikia, Ratul;Kumar, Rakesh;Singh, Tanuja;Srivastava, Alok K.;Arora, Dilip K.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • Pseudomonas fluorescens 1-94 induced systemic resistance in chickpea against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri by the synthesis and accumulation of phenolic compounds, phenylalanine ammonia lyase(PAL) and pathogenesis related(PR) proteins(chitinase, $\beta$-1,3-glucanase and peroxidase). Time-course accumulation of these enzymes in chickpea plants inoculated with P. fluorescens was significantly(LSD, P=0.05) higher than control. Maximum activities of PR-proteins were recorded at 3 days after inoculation in all induced plants; thereafter, the activity decreased progressively. Five PR peroxidases detected in induced chickpea plants. Molecular mass of these purified peroxidases was 20, 29, 43, 66 and 97 kDa. Purified peroxidases showed antifungal activity against plant pathogenic fungi.

Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp. (Bacillus spp. 엽면살포에 의한 가로수 및 고추의 병 방제)

  • Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.81-93
    • /
    • 2016
  • Out of plant-associated bacteria, certain plant growth-promoting bacteria (PGPB) have been reported to increase plant growth and productivity and to elicit induced resistance against plant pathogens. In this study, our objective was to broaden the range of applications of leaf-colonizing PGPB for foliar parts of road tress and pepper. Total 1,056 isolates of endospore-forming bacteria from tree phylloplanes were collected and evaluated for the enzymatic activities including protease, lipase, and chitinase and antifungal capacities against two fungal pathogens, Colletotrichum graminicola and Botrytis cinerea. Fourteen isolates classified as members of the bacilli group displayed the capacity to colonize pepper leaves after spraying inoculation. Three strains, 5B6, 8D4, and 8G12, and the mixtures were employed to evaluate growth promotion, yield increase and defence responses under field condition. Additionally, foliar application of bacterial preparation was applied to the road tress in Yuseong, Daejeon, South Korea, resulted in increase of chlorophyll contents and leaf thickness, compared with non-treated control. The foliar application of microbial preparation reduced brown shot-hole disease of Prunus serrulata L. and advanced leaf abscission in Ginkgo biloba L. Collectively, our results suggest that leaf-colonizing bacteria provide potential microbial agents to increase the performance of woody plants such as tree and pepper through spray application.