DOI QR코드

DOI QR Code

Characterization of a Phenazine and Hexanoyl Homoserine Lactone Producing Pseudomonas aurantiaca Strain PB-St2, Isolated from Sugarcane Stem

  • Mehnaz, Samina (School of Biological Sciences, Quaid-e-Azam Campus, University of the Punjab) ;
  • Baig, Deeba Noreen (School of Biological Sciences, Quaid-e-Azam Campus, University of the Punjab) ;
  • Jamil, Farrukh (School of Biological Sciences, Quaid-e-Azam Campus, University of the Punjab) ;
  • Weselowski, Brian (Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada) ;
  • Lazarovits, George (Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada)
  • Published : 2009.12.31

Abstract

A novel strain of fluorescent pseudomonad (PB-St2) was isolated from surface-sterilized stems of sugarcane grown in Pakistan. The bacterium was identified as Pseudomonas aurantiaca on the basis of 16S rRNA gene sequence analysis and results from physiological and biochemical characteristics carried out with API50 CH and QTS 24 bacterial identification kits. Assays using substrate-specific media for enzymes revealed lipase and protease activities but cellulase, chitinase, or pectinase were not detected. The bacterium was unable to solubilize phosphate or produce indole acetic acid. However, it did produce HCN, siderophores, and homoserine lactones. In dual culture assays on agar, the bacterium showed antifungal activity against an important pathogen of sugarcane in Pakistan, namely Colletotrichum falcatum, as well as for pathogenic isolates of Fusarium oxysporium and F. lateritium but not against F. solani. The antifungal metabolites were identified using thin-layer chromatography, UV spectra, and MALDI-TOFF spectra and shown to be phenazine-1-carboxylic acid (PCA), 2-hydroxyphenazine (2-OH-PHZ), and N-hexanoyl homoserine lactone (HHL) (assessed using only TLC data). The capacity of this bacterium to produce HCN and 2-OH-PHZ, as well as to inhibit the growth of C. falcatum, has not been previously reported.

Keywords

References

  1. Cavalcante, V. A. and J. Dobereiner. 1988. A new acid tolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil 108: 23-31 https://doi.org/10.1007/BF02370096
  2. Chin-A-Woeng, T. F. C., G. V. Bloomberg, and B. J. J. Lugtenberg. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157: 503-523 https://doi.org/10.1046/j.1469-8137.2003.00686.x
  3. Ellis, R. J., T. M. Timms-Wilson, and M. J. Bailey. 2000. Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ. Microbiol. 2: 247-284 https://doi.org/10.1046/j.1462-2920.2000.00102.x
  4. Feklistova, I. N. and N. P. Maksimova. 2008. Obtaining Pseudomonas aurantiaca strains capable of overproduction of phenazine antibiotics. Microbiology 77: 176-180 https://doi.org/10.1134/S0026261708020094
  5. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  6. Gordon, S. A. and R. P. Weber. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 26: 192-195 https://doi.org/10.1104/pp.26.1.192
  7. King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44: 301-307
  8. Kumar, R. S., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkatesvarlu, O. Prsakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145-154 https://doi.org/10.1111/j.1365-2672.2004.02435.x
  9. Liu, H., Y. He, H. Jiang, H. Peng, X. Huang, X. Zhang, L. S. Thomashow, and Y. Xu. 2007. Characterization of a phenazine producing strain Pseudomonas chlororaphis GP72 with broad spectrum antifungal activity from green pepper rhizosphere. Curr. Microbiol. 54: 302-306 https://doi.org/10.1007/s00284-006-0444-4
  10. MacFadden, J. F. 1980. Biochemical Tests for Identification of Medical Bacteria, pp. 51-54. Williams and Wilkins, Baltimore
  11. Malathi, P., R. Viswanathan, P. Padmanaban, D. Mohanraj, and A. R. Sundar. 2002. Microbial detoxification of Colletotrichum falcatum toxin. Curr. Sci. 83: 745-749
  12. Mandryk, M. N., E. Kolomiets, and E. S. Dey. 2007. Characterization of antimicrobial compounds produced by Pseudomonas aurantiaca S-1. Pol. J. Microbiol. 56: 245-250
  13. Mark, G. L., J. P. Morrissey, P. Higgins, and F. O'Gara. 2006. Molecular based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol. Ecol. 56: 167-177 https://doi.org/10.1111/j.1574-6941.2006.00056.x
  14. McClean, K. H., M. K. Winson, L. Fish, A. Taylor, S. R. Chhabra, M. Camara, et al. 1997. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143: 3703-3711 https://doi.org/10.1099/00221287-143-12-3703
  15. Mehnaz, S., M. S. Mirza, J. Haurat, R. Bally, P. Normand, A. Bano, and K. A. Malik. 2001. Isolation and 16S rRNA sequence analysis of beneficial bacteria from the rhizosphere of rice. Can. J. Microbiol. 47: 110-117 https://doi.org/10.1139/cjm-47-2-110
  16. Miller, R. L. and V. J. Higgins. 1970. Association of cyanide with infection of birdsfoot trefoil by Stemphylium loti. Phytopathology 60:104-110 https://doi.org/10.1094/Phyto-60-104
  17. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270 https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  18. Nowak-Thompson, B., P. E. Hammer, D. S. Hill, J. Stafford, N. Torkewitz, T. D. Gaffney, S. T. Lam, I. Molnar, and J. M. Ligon. 2003. 2,5-Dialkylresorcinol biosynthesis in Pseudomonas aurantiaca: Novel head-to-head condensation of two fatty acidderived precursors. J. Bacteriol. 185: 860-869 https://doi.org/10.1128/JB.185.3.860-869.2003
  19. Omel'yanets, T. G. and G. P. Mel'nik. 1987. Toxicological evaluation of the microbial preparation mycolytin. Zdravookhranenie Turkmenistana 6: 8
  20. Peix, A., A. Valverde, R. Rivas, J. M. Igual, M. H. Ramirez-Bahena, P. F. Mateos, et al. 2007. Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov., and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 57: 1286-1290 https://doi.org/10.1099/ijs.0.64621-0
  21. Pearson, J. P., K. M. Gray, L. Passador, K. D. Yucker, A. Eberhard, B. H. Iglewski, and E. P. Greenberg. 1994. Structure of the auto-inducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. U.S.A. 91: 197-201 https://doi.org/10.1073/pnas.91.1.197
  22. Perez-Miranda, S., N. Cabirol, R. George-Tellez, L. S. Zamudio-Rivera, and F. J. Fernandez. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Meth. 70: 127-131 https://doi.org/10.1016/j.mimet.2007.03.023
  23. Rashid, N., Y. Shimada, S. Ezaki, H. A. Tomi, and T. Y. Imanaka. 2001. Low temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67: 4064-4069 https://doi.org/10.1128/AEM.67.9.4064-4069.2001
  24. Rosado, A. S., F. S. de Azevedo, D. W. da Cruz, J. D. Van Elsa, and L. Seldin. 1998. Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane soil of different grasses. J. Appl. Microbiol. 84: 216-226 https://doi.org/10.1046/j.1365-2672.1998.00332.x
  25. Rovera, M., J. Andres, E. Carlier, C. Pasluosta, and S. Rosas. 2008. Pseudomonas aurantiaca: Plant growth promoting traits, secondary metabolites and inoculation response, pp. 155-164. In I. Ahmad, J. Pichtel, and S. Hayat (eds.). Plant-Bacteria Interactions. Strategies and Techniques to Promote Plant Growth. Wiley-VCH, Germany
  26. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  27. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anals Biochem. 160: 46-56 https://doi.org/10.1016/0003-2697(87)90612-9
  28. Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. U.S.A. 101: 11030-11035 https://doi.org/10.1073/pnas.0404206101
  29. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599 https://doi.org/10.1093/molbev/msm092
  30. William, G. E. and M. J. C. Asher. 1996. Selection of rhizobacteria for the control of Pythium ultimum and Aphanomyces cochlioides on sugarbeet seedlings. Crop Protec. 15: 479-486 https://doi.org/10.1016/0261-2194(96)00014-2

Cited by

  1. Genetic and Phenotypic Diversity of Plant Growth Promoting Rhizobacteria Isolated from Sugarcane Plants Growing in Pakistan vol.20, pp.12, 2009, https://doi.org/10.4014/jmb.1005.05014
  2. Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72 vol.89, pp.1, 2009, https://doi.org/10.1007/s00253-010-2863-1
  3. Elucidation of Antifungal Metabolites Produced by Pseudomonas aurantiaca IB5-10 with Broad-Spectrum Antifungal Activity vol.22, pp.3, 2009, https://doi.org/10.4014/jmb.1106.06042
  4. Evaluation ofPseudomonas chlororaphissubsp.aurantiacaSR1 for growth promotion of soybean and for control ofMacrophomina phaseolina vol.24, pp.9, 2014, https://doi.org/10.1080/09583157.2014.910293
  5. Complete Genome Sequence of the Sugar Cane Endophyte Pseudomonas aurantiaca PB-St2, a Disease-Suppressive Bacterium with Antifungal Activity toward the Plant Pathogen Colletotrichum falcatum vol.2, pp.1, 2009, https://doi.org/10.1128/genomea.01108-13
  6. Reaction Kinetics for the Biocatalytic Conversion of Phenazine-1-Carboxylic Acid to 2-Hydroxyphenazine vol.9, pp.6, 2009, https://doi.org/10.1371/journal.pone.0098537
  7. The Systematic Investigation of the Quorum Sensing System of the Biocontrol Strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 Unveils aurI to Be a Biosynthetic Origin for 3-Oxo-Homoserine vol.11, pp.11, 2016, https://doi.org/10.1371/journal.pone.0167002
  8. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine vol.15, pp.None, 2009, https://doi.org/10.1186/s12934-016-0529-0
  9. Bioprospecting from cultivable bacterial communities of marine sediment and invertebrates from the underexplored Ubatuba region of Brazil vol.199, pp.1, 2009, https://doi.org/10.1007/s00203-016-1290-9
  10. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere vol.8, pp.None, 2009, https://doi.org/10.3389/fmicb.2017.01268
  11. Secondary Metabolites Production and Plant Growth Promotion by Pseudomonas chlororaphis and P. aurantiaca Strains Isolated from Cactus, Cotton, and Para Grass vol.27, pp.3, 2017, https://doi.org/10.4014/jmb.1601.01021
  12. Metabolic and Genomic Traits of Phytobeneficial Phenazine-Producing Pseudomonas spp. Are Linked to Rhizosphere Colonization in Arabidopsis thaliana and Solanum tuberosum vol.86, pp.4, 2009, https://doi.org/10.1128/aem.02443-19
  13. Control of pyrimidine nucleotide formation in Pseudomonas aurantiaca vol.202, pp.6, 2009, https://doi.org/10.1007/s00203-020-01842-x
  14. Whole Genome Analysis of Sugarcane Root-Associated Endophyte Pseudomonas aeruginosa B18-A Plant Growth-Promoting Bacterium With Antagonistic Potential Against Sporisorium scitamineum vol.12, pp.None, 2009, https://doi.org/10.3389/fmicb.2021.628376
  15. Inhibition of Three Potato Pathogens by Phenazine-Producing Pseudomonas spp. Is Associated with Multiple Biocontrol-Related Traits vol.6, pp.3, 2009, https://doi.org/10.1128/msphere.00427-21
  16. Ecology of microorganisms from springs of national park "Alkhanai" (Transbaikalia, Russia) vol.848, pp.1, 2009, https://doi.org/10.1088/1755-1315/848/1/012115