DOI QR코드

DOI QR Code

Biocontrol Potential of Streptomyces griseus H7602 Against Root Rot Disease (Phytophthora capsici) in Pepper

  • Nguyen, Xuan-Hoa (Division of Applied Bioscience and Biotechnology, Environment-Friendly Agriculture Research Center, Chonnam National University) ;
  • Naing, Kyaw-Wai (Division of Applied Bioscience and Biotechnology, Environment-Friendly Agriculture Research Center, Chonnam National University) ;
  • Lee, Young-Seong (Division of Applied Bioscience and Biotechnology, Environment-Friendly Agriculture Research Center, Chonnam National University) ;
  • Tindwa, Hamisi (Division of Applied Bioscience and Biotechnology, Environment-Friendly Agriculture Research Center, Chonnam National University) ;
  • Lee, Geon-Hyoung (Department of Biology, Kunsan National University) ;
  • Jeong, Byoung-Kon (Department of Environmental Engineering, Kunsan National University) ;
  • Ro, Hee-Myeong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Sang-Jun (Corporation of Nature and People) ;
  • Jung, Woo-Jin (Division of Applied Bioscience and Biotechnology, Environment-Friendly Agriculture Research Center, Chonnam National University) ;
  • Kim, Kil-Yong (Division of Applied Bioscience and Biotechnology, Environment-Friendly Agriculture Research Center, Chonnam National University)
  • Received : 2012.03.29
  • Accepted : 2012.05.24
  • Published : 2012.09.01

Abstract

The root rot of pepper (Capsicum annuum L.) caused by Phytophthora capsici is one of the most important diseases affecting this crop worldwide. This work presents the evaluation of the capacity of Streptomyces griseus H7602 to protect pepper plants against Phytophthora capsici and establishes its role as a biocontrol agent. In this study, we isolated an actinomycete strain H7602 from rhizosphere soil, identified it as Streptomyces griseus by 16S rRNA analysis and demonstrated its antifungal activity against various plant pathogens including P. capsici. H7602 produced lytic emzymes such as chitinase, ${\beta}$-1,3-glucanase, lipase and protease. In addition, crude extract from H7602 also exhibited destructive activity toward P. capsici hyphae. In the pot trial, results showed the protective effect of H7602 against pepper from P. capsici. Application of H7602 culture suspension reduced 47.35% of root mortality and enhanced growth of pepper plants for 56.37% in fresh root and 17.56% g in fresh shoot as compared to control, resulting in greater protection to pepper plants against P. capsici infestation. Additionally, the enzymatic activities, chitinase and ${\beta}$-1,3-glucanase, were higher in rhizosphere soil and roots of pepper plants treated with H7602 than other treated plants. Therefore, our results indicated a clear potential of S. griseus H7602 to be used for biocontrol of root rot disease caused by P. capsici in pepper.

Keywords

References

  1. An, Y., Kang, S., Kim, K. D., Hwang, B. K. and Jeun, Y. 2010. Enhanced defense responses of tomato plants against late blight pathogen Phytophthora infestans by pre-inoculation with rhizobacteria. Crop Prot. 29:1406-1412. https://doi.org/10.1016/j.cropro.2010.07.023
  2. Arthurs, S. C., McKenzie, L., Chen, J., Dogramaci, M., Brennan, M., Houben, K. and Osborne, L. 2009. Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biol. Control. 49:91-96. https://doi.org/10.1016/j.biocontrol.2009.01.002
  3. Baker, K. F. and Cook, R. J. 1982. Biological control of plant pathogens. The American Phytopathological Society, Saint Paul, Minnesota. 433.
  4. Bressan, W. and Figueiredo, J. E. F. 2008. Efficacy and doseresponse relationship in biocontrol of Fusarium disease in maize by Streptomyces spp.. Eur. J. Plant Pathol. 120:311-316. https://doi.org/10.1007/s10658-007-9220-y
  5. Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  6. Dumas-Gaudot, E. 1996. Plant hydrolytic enzymes (chitinases and $\beta$-l, 3-glucanases) in root reactions to pathogenic and symbiotic microorganisms. Plant Soil. 185:211-221. https://doi.org/10.1007/BF02257526
  7. El-abyad, M. S., El-sayed, M. A., El-shanshoury, A. R. and Elsabbagh, S. M. 1993. Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil. 149:185-195. https://doi.org/10.1007/BF00016608
  8. Ezra, D., Hess, W. M. and Strobel, G. A. 2004. New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023-4031. https://doi.org/10.1099/mic.0.27334-0
  9. Ezziyyani, M., Requena, E., Egea-Gilabert, C. and Candela, M. E. 2007. Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. J. Phytopathol. 155:342-349. https://doi.org/10.1111/j.1439-0434.2007.01237.x
  10. Folman, L. B., Postma, J. and van Veen, J. A. 2003. Characterization of Lysobacter enzymogenes (Christensen and Cook 1978) strain 3.1T8, a powerful antagonist of fungal diseases of cucumber. Microbiol. Res. 158:107-115. https://doi.org/10.1078/0944-5013-00185
  11. Hwan, B. K. and Kim, A. H. 1995. Phytophthora blight of pepper and its control in Korea. Plant Disease 79:221-227. https://doi.org/10.1094/PD-79-0221
  12. Igarashi, Y., Ogawa, M., Sato, Y., Saito, N., Yoshida, R., Kunohc, H., Onaka, H. and Furumai, T. 2000. Fistupyrone, a novel inhibitor of the infection of Chinese cabbage by Alternaria brassicicola, from Streptomyces sp. TP-A0569. J. Antibiot. 53:1117-1122. https://doi.org/10.7164/antibiotics.53.1117
  13. Jackson, A. O. and Taylor, C. B. 1996. Plant-microbe interactions: life and death at the interface. Plant Cell 8:1651-1680. https://doi.org/10.1105/tpc.8.10.1651
  14. Jung, W. J., Jin, Y. L., Kim, K. Y., Park, R. D. and Kim, T. H. 2005. Changes in pathogenesis-related proteins in pepper plants with regard to biological control of Phytophthora blight with Paenibacillus illinoisensis. BioControl. 50:165-178. https://doi.org/10.1007/s10526-004-0451-y
  15. Khan, F. U., Nelson, B. D. and Helms, T. C. 2005. Greenhouse evaluation of binucleate Rhizoctonia for control of R. solani in soybean. Plant Dis. 89:373-379. https://doi.org/10.1094/PD-89-0373
  16. Kim, K. D., Nemec, S. and Musson, G. 1997. Control of Phytophthora root and crown rot of bell pepper with composts and soil amendments in the greenhouse. Appl. Soil Ecol. 5:169-179. https://doi.org/10.1016/S0929-1393(96)00138-2
  17. Kim, K. J., Yang, Y. J. and Kim, J. G. 2003. Purification and characterization of chitinase from Streptomyces sp. M-20. J. Biochem. Mol. Biol. 36:185-189. https://doi.org/10.5483/BMBRep.2003.36.2.185
  18. Knievel, D. P. 1973. Procedure for estimating ratio of live to dead root dry matter in root core samples. Crop Sci. 13:124-126. https://doi.org/10.2135/cropsci1973.0011183X001300010043x
  19. Lee, J. Y., Jung, H. W. and Hwang, B. K. 2005. Streptomyces koyangensis sp. nov., a novel actinomycete that produces 4-phenyl-3-butenoic acid. International J. Syst. Evol. Microbiol. 55:257-262. https://doi.org/10.1099/ijs.0.63168-0
  20. Ma, Y., Chang, Z. Z., Zhao, J. T. and Zhou, M. G. 2008. Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biol. Control. 44:24-31. https://doi.org/10.1016/j.biocontrol.2007.10.005
  21. Mao, S., Lee, S. J., Hwangbo, H., Kim, Y. W., Park, K. H., Cha, G. S., Park, R. D. and Kim, K. Y. 2006. Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr. Microbiol. 53:358-364. https://doi.org/10.1007/s00284-005-0333-2
  22. Mukherjee, G. and Sen, S. K. 2006. Purification, characterization, and antifungal activity of chitinase from Streptomyces venezuelae P10. Curr. Microbiol. 53:265-269. https://doi.org/10.1007/s00284-005-0412-4
  23. Paul, D. and Sarma, Y. 2006. Antagonistic effects of metabolites of Pseudomonas fluorescens strains on the different growth phases of Phytophthora capsici, foot rot pathogen of black pepper (Piper nigrum L.). Arch. Phytopathol. Plant Protect. 39:311-314. https://doi.org/10.1080/03235400500301190
  24. Ramamoorthy, V., Raguchander, T. and Samiyappan, R. 2002. Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant Soil. 239:55-68. https://doi.org/10.1023/A:1014904815352
  25. Raupach, G. S. and Kloepper, J. W. 1998. Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158-1164. https://doi.org/10.1094/PHYTO.1998.88.11.1158
  26. Ristaino, J. B. and Johnston, S. A. 1999. Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Dis. 83:1080-1089. https://doi.org/10.1094/PDIS.1999.83.12.1080
  27. Sang, M. K., Chun, S. C. and Kim, K. D. 2008. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol. Control. 46:424-433. https://doi.org/10.1016/j.biocontrol.2008.03.017
  28. Sang, M. K., Kim, J. D., Kim, B. S. and Kim, K. D. 2011. Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101:666-678. https://doi.org/10.1094/PHYTO-08-10-0224
  29. Shen, S. S., Choi, O. H., Lee, S. M. and Park, C. S. 2002. In vitro and in vivo activities of a biocontrol agent, Serratia plymuthica A21-4, against Phytophthora capsici. Korean J. Plant Pathol. 18:221-224. https://doi.org/10.5423/PPJ.2002.18.4.221
  30. Tabatabai, M. A. 1982. Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analyses, Part 2, chemical and microbiological properties. American Society of Agronomy, Madison, WI, USA, 2nd edn:903-947.
  31. Trejo-Estrada, S. R., Sepulveda, I. R. and Crawford, D. L. 1998. In vitro and in vivo antagonism of Streptomyces violaceusniger YCED9 against fungal pathogens of turf grass. World J. Microbiol. Biotechnol. 14:865-872. https://doi.org/10.1023/A:1008877224089
  32. Waksman, S. A., Reilly, H. C. and Harris Dale, A. 1948. Streptomyces griseus (Krainsky) Waksman and Henrici. J. Bacteriol. 56:259-269.
  33. Yedidia, I., Benhamou, N., Kapulnik, Y. and Chet, I. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38:863-873. https://doi.org/10.1016/S0981-9428(00)01198-0
  34. Zdor, R. E. and Anderson, A. J. 1992. Influence of root colonizing bacteria on the defense responses in bean. Plant Soil. 140:99-107. https://doi.org/10.1007/BF00012811

Cited by

  1. Effects of oil extracts of Eupatorium adenophorum on Phytophthora capsici and other plant pathogenic fungi in vitro vol.140, 2017, https://doi.org/10.1016/j.pestbp.2017.06.012
  2. Isolation and Identification ofBacillus amyloliquefaciensIBFCBF-1 with Potential for Biological Control of Phytophthora Blight and Growth Promotion of Pepper vol.164, pp.11-12, 2016, https://doi.org/10.1111/jph.12522
  3. Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces 2017, https://doi.org/10.1007/s10526-017-9838-4
  4. Microbial and physico-chemical evaluation of soils from different farming systems practicing fields in Lesotho and the adaptive capacity of Machobane Farming System to climate change vol.10, pp.40, 2015, https://doi.org/10.5897/AJAR2015.10365
  5. Biocontrol of Late Blight Disease (Phytophthora capsici) of Pepper and the Plant Growth Promotion byPaenibacillus ehimensisKWN38 vol.162, pp.6, 2014, https://doi.org/10.1111/jph.12198
  6. Morphoagronomic traits of BRS 610 sorghum submitted to artificial defoliation vol.10, pp.40, 2015, https://doi.org/10.5897/AJAR2015.10263
  7. The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici vol.98, 2016, https://doi.org/10.1016/j.biocontrol.2016.02.011
  8. Antagonism of antifungal metabolites fromStreptomyces griseusH7602 againstPhytophthora capsici vol.55, pp.1, 2015, https://doi.org/10.1002/jobm.201300820
  9. Selection of Biocontrol Agent of Tomato Gray Mold Disease from Flower and Pollinator Hive vol.21, pp.1, 2017, https://doi.org/10.7585/kjps.2017.21.1.90