DOI QR코드

DOI QR Code

Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp.

Bacillus spp. 엽면살포에 의한 가로수 및 고추의 병 방제

  • Chung, Joon-hui (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 정준휘 (한국생명공학연구원 분자식물세균실험실) ;
  • 류충민 (한국생명공학연구원 분자식물세균실험실)
  • Received : 2016.03.15
  • Accepted : 2016.06.08
  • Published : 2016.06.30

Abstract

Out of plant-associated bacteria, certain plant growth-promoting bacteria (PGPB) have been reported to increase plant growth and productivity and to elicit induced resistance against plant pathogens. In this study, our objective was to broaden the range of applications of leaf-colonizing PGPB for foliar parts of road tress and pepper. Total 1,056 isolates of endospore-forming bacteria from tree phylloplanes were collected and evaluated for the enzymatic activities including protease, lipase, and chitinase and antifungal capacities against two fungal pathogens, Colletotrichum graminicola and Botrytis cinerea. Fourteen isolates classified as members of the bacilli group displayed the capacity to colonize pepper leaves after spraying inoculation. Three strains, 5B6, 8D4, and 8G12, and the mixtures were employed to evaluate growth promotion, yield increase and defence responses under field condition. Additionally, foliar application of bacterial preparation was applied to the road tress in Yuseong, Daejeon, South Korea, resulted in increase of chlorophyll contents and leaf thickness, compared with non-treated control. The foliar application of microbial preparation reduced brown shot-hole disease of Prunus serrulata L. and advanced leaf abscission in Ginkgo biloba L. Collectively, our results suggest that leaf-colonizing bacteria provide potential microbial agents to increase the performance of woody plants such as tree and pepper through spray application.

식물생장촉진세균은 식물의 생장과 수확량을 촉진하고, 식물병에 대한 유도저항성을 유도하는 것으로 보고되었다. 본 논문에서 연구의 목적은 가로수와 고추의 엽면에 엽권정착 식물생장촉진세균을 처리하여, 식물생장촉진세균의 적용 범위를 확장하였다. 수목의 엽권에서 내생포자 형성 세균 1,056개 균주를 분리하여, protease, chitinase, lipase를 포함한 효소활성과 진균병인 C. graminicola와 B. cinerea에 대한 길항작용을 측정하였다. 1차 선발된 bacilli 14개 균주를 고추의 잎에 살포하여 엽권정착능을 시험하였다. 5B6, 8D4, 8G12 단독처리와 그 혼합처리군을 고추 엽면에 살포하여 생장촉진, 수확량증진, 병방제 효과를 고추 포장에서 관찰하였다. 대량배양을 통하여 선발된 균주를 대한민국 대전광역시 유성구 일대의 가로수에 살포하였을 때, 대조군과 비교하여 엽록소함량과 잎 두께가 증가하였다. 선발된 3개 균주를 수목에 엽면살포했을 때, 벚나무 진균성갈색무늬구멍병을 저해하였고 은행나무의 낙엽생성을 촉진하였다. 종합적으로 본 연구는 엽권정착세균의 엽면살포를 통하여 가로수와 고추의 생장을 촉진시키고, 식물병을 방제하는 엽권정착세균의 적용 가능성을 제시한다.

Keywords

References

  1. Agrios, G. N. 1997. Plant Pathology. 4th ed. Academic Press, San Diego, CA, USA.
  2. Altindag, M., Sahin, M., Esitken, A., Ercisli, S., Guleryuz, M., Donmez, M. F. and Sahin, F. 2006. Biological control of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacihaliloglu) by Bacillus, Burkholdria, and Pseudomonas application under in vitro and in vivo conditions. Biol. Control 38: 369-372. https://doi.org/10.1016/j.biocontrol.2006.04.015
  3. Baker, C. J., Stavely, J. R., Thomas, C. A., Sasser, M. and MacFall, J. S. 1983. Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathology 73: 1148-1152. https://doi.org/10.1094/Phyto-73-1148
  4. Bashan, Y. and Holguin, G. 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem. 30: 1225-1228. https://doi.org/10.1016/S0038-0717(97)00187-9
  5. Behr, M., Humbeck, K., Hause, G., Deising, H. B. and Wirsel, S. G. 2010. The hemibiotroph Colletotrichum graminicola locally induces photosynthetically active green islands but globally accelerates senescence on aging maize leaves. Mol. Plant-Microbe Interact. 23: 879-892. https://doi.org/10.1094/MPMI-23-7-0879
  6. Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
  7. Bishop, S. 2009. Plant cell biology: when autumn falls. Nat. Rev. Mol. Cell Biol. 10: 238-239.
  8. Brock, A. K., Berger, B., Mewis, I. and Ruppel, S. 2013. Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb. Ecol. 65: 661-670. https://doi.org/10.1007/s00248-012-0146-3
  9. Cakmakci, R., Kantar, F. and Sahin, F. 2001. Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J. Plant Nutr. Soil Sci. 164: 527-531. https://doi.org/10.1002/1522-2624(200110)164:5<527::AID-JPLN527>3.0.CO;2-1
  10. Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E. and Lumyong, S. 2002. Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. Sci. Asia 28: 241-245. https://doi.org/10.2306/scienceasia1513-1874.2002.28.241
  11. Chernin, L. and Chet, I. R. 2002. Microbial enzymes in the biocontrol of plant pathogens and pests. In: Enzymes in the Environment: Activity, Ecology, and Applications, eds. by R. G. Burns and R. P. Dick, pp. 171-226. CRC Press, New York, NY, USA.
  12. Choudhary, D. K., Prakash, A. and Johri, B. N. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J. Microbiol. 47: 289-297. https://doi.org/10.1007/s12088-007-0054-2
  13. Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D. and Roberts, D. P. 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80: 115-123. https://doi.org/10.1007/s00253-008-1520-4
  14. Cirvilleri, G., Spina, S., Iacona, C., Catara, A. and Muleo, R. 2008. Study of rhizosphere and phyllosphere bacterial community and resistance to bacterial canker in genetically engineered phytochrome A cherry plants. J. Plant Physiol. 165: 1107-1119. https://doi.org/10.1016/j.jplph.2008.01.009
  15. Cohen, A. C., Bottini, R. and Piccoli, P. N. 2008. Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul. 54: 97-103. https://doi.org/10.1007/s10725-007-9232-9
  16. Cohen, A. C., Travaglia, C. N., Bottini, R. and Piccoli, P. N. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87: 455-462. https://doi.org/10.1139/B09-023
  17. Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. App. Environ. Microbiol. 71: 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  18. Coste, S., Baraloto, C., Leroy, C., Marcon, e., Renaud, A., Richardson, A. D., Roggy, J. C., Schimann, H., Uddling, J. and Herault, B. 2010. Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Ann. Forest Sci. 67: 607. https://doi.org/10.1051/forest/2010020
  19. Dawwam, G. E., Elbeltagy, A., Emara, H. M., Abbas, I. H. and Hassan, M. M. 2013. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann. Agric. Sci. 58: 195-201.
  20. Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., von Mering, C. and Vorholt, J. A. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. U. S. A. 106: 16428-16433. https://doi.org/10.1073/pnas.0905240106
  21. Donmez, M. F., Esitken, A., Yildiz, H. and Ercisli, S. 2011. Biocontrol of Botrytis cinerea on strawberry fruit by plant growth promoting bacteria. J. Anim. Plant Sci. 21: 758-763.
  22. Enebak, S. A. and Carey, W. A. 2000. Evidence for induced systemic protection to fusiform rust in loblolly pine by plant growthpromoting rhizobacteria. Plant Dis. 84: 306-308. https://doi.org/10.1094/PDIS.2000.84.3.306
  23. Esitken, A., Karlidag, H., Ercisli, S. and Sahin, F. 2002. Effects of foliar application of Bacillus subtilis Osu-142 on the yield, growth and control of shot-hole disease (coryneum blight) of apricot. Gartenbauwissenschaft 67: 139-142.
  24. Esitken, A., Pirlak, L., Turan, M. and Sahin, F. 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hortic. 110: 324-327. https://doi.org/10.1016/j.scienta.2006.07.023
  25. Eyles, A., Bonello, P., Ganley, R. and Mohammed, C. 2010. Induced resistance to pests and pathogens in trees. New Phytol. 185:893-908. https://doi.org/10.1111/j.1469-8137.2009.03127.x
  26. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9: 436-442. https://doi.org/10.1016/j.pbi.2006.05.014
  27. Ganeshan, G. and Manoj Kumar, A. 2005. Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. J. Plant Interact. 1: 123-134. https://doi.org/10.1080/17429140600907043
  28. Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica Online publication. doi: 10.6064/2012/963401.
  29. Glick, B. R. and Bashan, Y. 1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 15: 353-378. https://doi.org/10.1016/S0734-9750(97)00004-9
  30. Gomez-Cadenas, A., Tadeo, F. R., Talon, M. and Primo-Millo, E. 1996. Leaf abscission induced by ethylene in water-stressed intact seedlings of cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol. 112: 401-408. https://doi.org/10.1104/pp.112.1.401
  31. Han, S. H., Kang, B. R., Lee, J. H., Kim, H. J., Park, J. Y., Kim, J. J. and Kim, Y. C. 2012. Isolation and characterization of oligotrophic bacteria possessing induced systemic disease resistance against plant pathogens. Plant Pathol. J. 28: 68-74. https://doi.org/10.5423/PPJ.NT.11.2011.0218
  32. Hariprasad, P., Divakara, S. T. and Niranjana, S. R. 2011. Isolation and characterization of chitinolytic rhizobacteria for the management of Fusarium wilt in tomato. Crop Prot. 30: 1606-1612. https://doi.org/10.1016/j.cropro.2011.02.032
  33. Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C. and Murata, Y. 2011. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiol. 156: 430-438. https://doi.org/10.1104/pp.111.172254
  34. Hsu, S. C. and Lockwood, J. L. 1975. Powdered chitin agar as a selective medium for enumeration of Actinomycetes in water and soil. Appl. Microbiol. 29: 422-426.
  35. Jacobsen, B. J. 1997. Role of plant pathology in integrated pest management. Annu. Rev. Phytopathol. 35: 373-391. https://doi.org/10.1146/annurev.phyto.35.1.373
  36. Jacobsen, B. J., Zidack, N. K. and Larson, B. J. 2004. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94: 1272-1275. https://doi.org/10.1094/PHYTO.2004.94.11.1272
  37. Jiang, Z. Q., Guo, Y. H., Li, S. M., Qi, H. Y. and Guo, J. H. 2006. Evaluation of biocontrol efficiency of different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. Biol. Control 36: 216-223. https://doi.org/10.1016/j.biocontrol.2005.10.012
  38. Kim, B. K., Chung, J. H., Kim, S. Y., Jeong, H., Kang, S. G., Kwon, S. K., Lee, C. H., Song, J. Y., Yu, D. S., Ryu, C. M. and Kim, J. F. 2012. Genome sequence of the leaf-colonizing Bacterium Bacillus sp. strain 5B6, isolated from a cherry tree. J. Bacteriol. 194: 3758-3759. https://doi.org/10.1128/JB.00682-12
  39. Kim, J. H., Woo, H. R., Kim, J., Lim, P. O., Lee, I. C., Choi, S. H., Hwang, D. and Nam, H. G. 2009. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323: 1053-1057. https://doi.org/10.1126/science.1166386
  40. Kinkel, L. L. 1997. Microbial population dynamics on leaves. Annu. Rev. Phytopathol. 35: 327-347. https://doi.org/10.1146/annurev.phyto.35.1.327
  41. Kishore, G. K. and Pande, S. 2007. Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Lett. Appl. Microbiol. 44: 98-105. https://doi.org/10.1111/j.1472-765X.2006.02022.x
  42. Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886. https://doi.org/10.1038/286885a0
  43. Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., von Mering, C. and Vorholt, J. A. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6: 1378-1390. https://doi.org/10.1038/ismej.2011.192
  44. Korsten, L., De Villiers, E. E., Wehner, F. C. and Kotze, J. M. 1997. Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Dis. 81: 455-459. https://doi.org/10.1094/PDIS.1997.81.5.455
  45. Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J. and Borriss, R. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186: 1084-1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004
  46. Kucheryava, N., Fiss, M., Auling, G. and Kroppenstedt, R. M. 1999. Isolation and characterization of epiphytic bacteria from the phyllosphere of apple, antagonistic in vitro to Venturia inaequalis, the causal agent of apple scab. Syst. Appl. Microbiol. 22: 472-478. https://doi.org/10.1016/S0723-2020(99)80057-5
  47. Lee, D. W., Koh, Y. S., Kim, K. J., Kim, B. C., Choi, H. J., Kim, D. S., Suhartono, M. T. and Pyun, Y. R. 1999. Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 179: 393-400. https://doi.org/10.1111/j.1574-6968.1999.tb08754.x
  48. Lee, H. J., Kim, J. S., Yoo, S. J., Kang, E. Y., Han, S. H., Yang, K. Y., Kim, Y. C., McSpadden Gardener, B. and Kang, H. 2012. Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses. Plant Physiol. Biochem. 60: 46-52. https://doi.org/10.1016/j.plaphy.2012.07.020
  49. Lee, K. J., Kamala-Kannan, S., Sub, H. S., Seong, C. K. and Lee, G. W. 2008. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J. Microbiol. Biotechnol. 24: 1139-1145. https://doi.org/10.1007/s11274-007-9585-2
  50. Lee, S. M., Chung, J. h. and Ryu, C. M. 2015. Augmenting plant immune responses and biological control by microbial determinants. Res. Plant Dis. 21: 161-179. https://doi.org/10.5423/RPD.2015.21.3.161
  51. Leveau, J. J. H. 2015. Life of microbes on aerial plant parts. In: Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture, ed. by B. Lugtenberg, pp. 17-24. Springer International Publishing, Cham, Germany.
  52. Lindow, S. E. and Brandl, M. T. 2003. Microbiology of the phyllosphere. Appl. Environ. Bicrobiol. 69: 1875-1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003
  53. Lindow, S. E. and Leveau, J. H. 2002. Phyllosphere microbiology. Curr. Opin. Biotechnol. 13: 238-243. https://doi.org/10.1016/S0958-1669(02)00313-0
  54. Ling, Q., Huang, W. and Jarvis, P. 2011. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth. Res. 107: 209-214. https://doi.org/10.1007/s11120-010-9606-0
  55. Lugtenberg, B. J., Chin-A-Woeng, T. F. and Bloemberg, G. V. 2002. Microbe-plant interactions: principles and mechanisms. Anton. Leeuw. 81: 373-383. https://doi.org/10.1023/A:1020596903142
  56. Ma, Z., Proffer, T. J., Jacobs, J. L. and Sundin, G. W. 2006. Overex-pression of the $14{\alpha}$-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl. Environ. Microbiol. 72: 2581-2585. https://doi.org/10.1128/AEM.72.4.2581-2585.2006
  57. Maksimov, I. V., Abizgil'dina, R. R. and Pusenkova, L. I. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl. Biochem. Microbiol. 47: 333-345. https://doi.org/10.1134/S0003683811040090
  58. Neeraja, C., Anil, K., Purushotham, P., Suma, K., Sarma, P., Moerschbacher, B. M. and Podile, A. R. 2010. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit. Rev. Biotechnol. 30: 231-241. https://doi.org/10.3109/07388551.2010.487258
  59. Obradovic, A., Jones, J. B., Momol, M. T., Balogh, B. and Olson, S. M. 2004. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis. 88: 736-740. https://doi.org/10.1094/PDIS.2004.88.7.736
  60. Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580. https://doi.org/10.1105/tpc.10.9.1571
  61. Planchamp, C., Glauser, G. and Mauch-Mani, B. 2015. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front. Plant Sci. 5: 719.
  62. Pusey, P. L. 1989. Use of Bacillus subtilis and related organisms as biofungicides. Pestic. Sci. 27: 133-140. https://doi.org/10.1002/ps.2780270204
  63. Raupach, G. S. and Kloepper, J. W. 1998. Mixtures of plant growthpromoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88: 1158-1164. https://doi.org/10.1094/PHYTO.1998.88.11.1158
  64. Reid, M. S. 1985. Ethylene and abscission. HortScience 20: 45-50.
  65. Ryu, C. M., Shin, J. N., Qi, W., Ruhong, M., Kim, E. J. and Pan, J. G. 2011. Potential for augmentation of fruit quality by foliar application of bacilli spores on apple tree. Plant Pathol. J. 27: 164-169. https://doi.org/10.5423/PPJ.2011.27.2.164
  66. Sahin, F. and Miller, S. 1998. Resistance in Capsicum pubescens to Xanthomonas campestris pv. vesicatoria pepper race 6. Plant Dis. 82: 794-799. https://doi.org/10.1094/PDIS.1998.82.7.794
  67. Sakamoto, M., Munemura, I., Tomita, R. and Kobayashi, K. 2008a. Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J. 56: 13-27. https://doi.org/10.1111/j.1365-313X.2008.03577.x
  68. Sakamoto, M., Munemura, I., Tomita, R. and Kobayashi, K. 2008b. Reactive oxygen species in leaf abscission signaling. Plant Signal. Behav. 3: 1014-1015. https://doi.org/10.4161/psb.6737
  69. Saraf, M., Pandya, U. and Thakkar, A. 2014. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol. Res. 169: 18-29. https://doi.org/10.1016/j.micres.2013.08.009
  70. Silva, H. S. A., Romeiro, R. S., Carrer Filho, R., Pereira, J. L. A., Mizubuti, E. S. G. and Mounteer, A. 2004. Induction of systemic resistance by Bacillus cereus against tomato foliar diseases under field conditions. J. Phytopathol. 152: 371-375. https://doi.org/10.1111/j.1439-0434.2004.00853.x
  71. Smart, C. M. 1994. Gene expression during leaf senescence. New Phytol. 126: 419-448. https://doi.org/10.1111/j.1469-8137.1994.tb04243.x
  72. Stefan, M., Munteanu, N., Stoleru, V. and Mihasan, M. 2013. Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status and yield of runner bean. Rom. Biotech. Lett. 18: 8132-8143.
  73. Sun, X., Griffith, M., Pasternak, J. J. and Glick, B. R. 1995. Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 41: 776-784. https://doi.org/10.1139/m95-107
  74. Tortora, M. L., Diaz-Ricci, J. C. and Pedraza, R. O. 2011. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch. Microbiol. 193: 275-286. https://doi.org/10.1007/s00203-010-0672-7
  75. Uddling, J., Gelang-Alfredsson, J., Piikki, K. and Pleijel, H. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 91: 37-46. https://doi.org/10.1007/s11120-006-9077-5
  76. Vorholt, J. A. 2012. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10: 828-840. https://doi.org/10.1038/nrmicro2910
  77. Wang, Y., Ohara, Y., Nakayashiki, H., Tosa, Y. and Mayama, S. 2005. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol. Plant-Microbe Interact. 18: 385-396. https://doi.org/10.1094/MPMI-18-0385
  78. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511. https://doi.org/10.1093/jexbot/52.suppl_1.487
  79. Xue-Xuan, X., Hong-Bo, S., Yuan-Yuan, M., Gang, X., Jun-Na, S., Dong-Gang, G. and Cheng-Jiang, R. 2010. Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit. Rev. Biotechnol. 30: 222-230. https://doi.org/10.3109/07388551.2010.487186
  80. Yi, H. S., Yang, J. W., Choi, H. K., Ghim, S. Y. and Ryu, C. M. 2012. Benzothiadiazole-elicited defense priming and systemic acquired resistance against bacterial and viral pathogens of pepper under field conditions. Plant Biotechnol. Rep. 6: 373-380. https://doi.org/10.1007/s11816-012-0234-3
  81. Zehnder, G. W., Murphy, J. F., Sikora, E. J. and Kloepper, J. W. 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107: 39-50. https://doi.org/10.1023/A:1008732400383
  82. Zhigila, D. A., AbdulRahaman, A. A., Kolawole, O. S. and Oladele, F. A. 2014. Fruit morphology as taxonomic features in five varieties of Capsicum annuum L. Solanaceae. J. Bot. 2014. doi: 10.1155/2014/540868.