Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.03.2015.0036

Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea  

Han, Joon-Hee (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University)
Shim, Hongsik (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration)
Shin, Jong-Hwan (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University)
Kim, Kyoung Su (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University)
Publication Information
The Plant Pathology Journal / v.31, no.2, 2015 , pp. 165-175 More about this Journal
Abstract
Anthracnose is a fungal disease caused by Colletotrichum species that is detrimental to numerous plant species. Anthracnose control with fungicides has both human health and environmental safety implications. Despite increasing public concerns, fungicide use will continue in the absence of viable alternatives. There have been relatively less efforts to search antagonistic bacteria from mudflats harboring microbial diversity. A total of 420 bacterial strains were isolated from mudflats near the western sea of South Korea. Five bacterial strains, LB01, LB14, HM03, HM17, and LB15, were characterized as having antifungal properties in the presence of C. acutatum and C. gloeosporioides. The three Bacillus atrophaeus strains, LB14, HM03, and HM17, produced large quantities of chitinase and protease enzymes, whereas the B. amyloliquefaciens strain LB01 produced protease and cellulase enzymes. Two important antagonistic traits, siderophore production and solubilization of insoluble phosphate, were observed in the three B. atrophaeus strains. Analyses of disease suppression revealed that LB14 was most effective for suppressing the incidence of anthracnose symptoms on pepper fruits. LB14 produced antagonistic compounds and suppressed conidial germination of C. acutatum and C. gloeosporioides. The results from the present study will provide a basis for developing a reliable alternative to fungicides for anthracnose control.
Keywords
antifungal activity; Bacillus atrophaeus; biological control; Colletotrichum; mudflat;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Yoo, J. H., Park, I. C. and Kim, W. G. 2012. Biocontrol of anthracnose of chili pepper by Bacillus sp. NAAS-1. Korean J. Mycol. 40:277-281.   DOI   ScienceOn
2 Akhtar, M. S. and Siddiqui, Z. 2008. Glomus intraradices, Pseudomonas alcaligenes, and Bacillus pumilus: effective agents for the control of root-rot disease complex of chickpea (Cicer arietinum L.). J. Gen. Plant Pathol. 74:53-60.   DOI
3 Alexander, D. B. and Zuberer D. A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12:39-45.   DOI
4 Chet, I., rdentlich, A., Shapira, R. and Oppenheim, A. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by Rhizobacteria. Plant Soil 129:85-92.   DOI
5 Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80.   DOI   ScienceOn
6 Dey, R., Pal, K., Bhatt, D. and Chauhan, S. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159:371-394.   DOI   ScienceOn
7 Elad, Y. and Baker, R. 1985. Influence of trace amounts of cations and siderophore-producing Pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology 75:1047-1052.   DOI
8 Garbeva, P., van Veen, J. A. and van Elsas, J. D. 2004. MICROBIAL DIVERSITY IN SOIL: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243-270.   DOI   ScienceOn
9 Govender, V., Korsten, L. and Sivakumar, D. 2005. Semi-commercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharvest Biol. Technol. 38:57-65.   DOI   ScienceOn
10 Halder, A., Mishra, A., Bhattacharyya, P. and Chakrabartty, P. 1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J. Gen. Appl. Microbiol. 36:81-92.   DOI
11 Han, K. S., Kim, B. R., Kim, J. T., Hahm, S. S., Hong, K. H., Chung, C. K., Nam, Y. G., Yu, S. H. and Choi, J. E. 2013. Biological control of white rot in garlic using Burkholderia pyrrocinia CAB08106-4. Res. Plant Dis. 19:21-24.   DOI   ScienceOn
12 Howarth, F. G. 1991. Environmental impacts of classical biological control. Annu. Rev. Entomol. 36:485-509.   DOI   ScienceOn
13 Jang, M. R., Moon, H. K., Kim, T. R., Yuk, D. H., Kim, J. H. and Park, S. G. 2010. Dietary risk assessment for pesticide residues of vegetables in Seoul, Korea. Korean J. Nutr. 43:404-412.   DOI   ScienceOn
14 Hsu, S. and Lockwood, J. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. J. Appl. Microbiol. 29:422-426.
15 Huh, E. J. and Kim, J. W. 2010. Consumer knowledge and attitude to spending on environment-friendly agricultural products. Korean J. Hum. Ecol. 19:883-896.   DOI   ScienceOn
16 Idris, E. E., Iglesias, D. J., Talon, M. and Borriss, R. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 20:619-626.   DOI   ScienceOn
17 Jeon, S. Y., Kim, Y. G., Lee, S. M., Son, H. J., Park, H. C., Kim, S. T., Park, K. D., Kang, U. G. and Kim, K. K. 2010. Structural identification of antibiotics from Pseudomonas sp. RRj 228, a antifungal activity of Collectotrichum acutatum causing anthracnose on pepper. J. Life Sci. 20:1254-1260.   DOI   ScienceOn
18 Jung, M. K. and Oakley, B. R. 1990. Identification of an amino acid substitution in the benA, $\beta$-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity. Cell Motil. Cytoskeleton 17:87-94.   DOI   ScienceOn
19 Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. and Defago, G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0:importance of the bacterial secondary metabolite 2,4-diacetylphlorogluciniol. Mol. Plant-Microbe Interact. 5:4-13.   DOI
20 Kegley, S., Neumeister, L. and Martin, T. 1999. Disrupting the balance: ecological impacts of pesticides in California, pp. 7-65. Pesticide Action Network, North America.
21 Kim, J. T., Park, S. Y., Choi, W. B., Lee, Y. H. and Kim, H. T. 2008. Characterization of Colletotrichum isolates causing anthracnose of pepper in Korea. Plant Pathol. J. 24:17-23.   DOI   ScienceOn
22 Kim, B. S., Oh, H. M., Kang, H. J., Park, S. S. and Chun, J. S. 2004. Notes: Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14:205-211.
23 Kim, H. G. and Nam, M. H. 1999. Anthracnose of strawberry in Korea. Res. Plant Dis. 5:8-13.
24 Kim, J. H., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. G., Kim, D. W., Lee, S. W. and Moon, B. J. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17:438-444.
25 Kim, S., Park, M., Yeom, S. I., Kim, Y. M., Lee, J. M., et al. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 46:270-278.   DOI   ScienceOn
26 Kim, S. T. and Yun, S. C. 2011. Biocontrol Activity of Myxococcus sp. KYC 1126 against Phytophthora blight on hot pepper. Res. Plant Dis. 17:121-128.   DOI   ScienceOn
27 Kim, T. S., Lee, G. H., Kim, G. J., Lee, S. W., Park, K. S. and Park, J. W. 2010. Antifungal activity of bacterial strains isolated from tidal mudflat and salted seafood (traditional jeotgal) against six major plant pathogens. Korean J. Pestic. Sci. 14:421-426.
28 Kim, Y. K., Hong, S. J., Shim, C. K., Kim, M. J., Choi, E. J. Lee, M. H., Park, J. H., Han, E. J., An, N. H. and Jee, H. J. 2012. Functional analysis of Bacillus subtilis isolates and biological control of red pepper powdery mildew using Bacillus subtilis R2-1. Res. Plant Dis. 18:201-209.   DOI   ScienceOn
29 Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266.   DOI   ScienceOn
30 Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Pseudomonas siderophores: a mechanism explaining diseasesuppressive soils. Curr. Microbiol. 4:317-320.   DOI
31 Kong, H. G., Chun, O. J., Choi, K. H., Lee, K. Y., Baek, J. W., Kim, H. G., Murugaiyan, S., Moon, B. J. and Lee, S. W. 2010a. Formulation of Bacillus amyloliquefaciens A-2 and its efficacy to control tomato leaf mold caused by Fulvia fulva. Res. Plant Dis. 16:27-34.   DOI   ScienceOn
32 Kong, H. G., Kim, J. C., Choi, G. J., Lee, K. Y., Kim, H. J., Hwang, E. C., Moon, B. J. and Lee, S. W. 2010b. Production of surfactin and iturin by Bacillus licheniformis N1 responsible for plant disease control activity. Plant Pathol. J. 26:170-177.   DOI   ScienceOn
33 KOSTAT (Statistics Korea). 2013. Available from: http://kostat.go.kr
34 Kwak, Y. K., Kim, I. S., Cho, M. C., Lee, S. C. and Kim, S. 2012. Growth inhibition effect of environment-friendly farm materials in Colletotrichum acutatum in vitro. J. Bio-Environ. Control 21:127-133.
35 Lamsal, K., Kim, S. W., Kim, Y. S. and Lee, Y. S. 2012. Application of rhizobacteria for plant growth promotion effect and biocontrol of Anthracnose caused by Colletotrichum acutatum on Pepper. Mycobiology 40: 244-251.   DOI
36 Lee, G. W., Kim, M. J., Park, J. S., Chae, J. C., Soh, B. Y., Ju, J. E. and Lee, K. J. 2011. Biological control of Phytophthora blight and anthracnose disease in red-pepper using Bacillus subtilis S54. Res. Plant Dis. 17:86-89.   DOI   ScienceOn
37 Mahoney, M. J. and Tattar, R. 1980. Identification, etiology, and control of Euonymus fortunei anthracnose caused by Colletotrichum gloeosporioides. Plant Dis. 64:854-856.   DOI
38 Lee, S. Y., Weon, H. Y., Kim, J. J. and Han, J. H. 2013. Cultural characteristics and mechanism of Bacillus amyloliquefacien subsp. plantarum CC110 for biological control of cucumber downy mildew. Korean J. Pestic. Sci. 17:428-434.   DOI   ScienceOn
39 Lee, S. Y., Lee, S. B., Kim, Y. K. and Hwang, S. J. 2006. Biological control of garlic white rot accused by Sclereotium cepivorum and Sclereotium sp. using Bacillus subtilis 122 and Trichoderma harzianum 23. Res. Plant Dis. 12:81-84.   DOI   ScienceOn
40 Lim, T. H. 2005. Antifungal activity of Streptomyces griseofuscus 200401 against pathogens causing late blight and anthracnose on pepper. Korean J. Pestic. Sci. 9:102-107.
41 Malik, K. A., Bilal, R., Mehnaz, S., Rasul, G., Mirza, M. S. and Ali, S. 1997. Association of nitrogen-fixing, plant-growthpromoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37-44.   DOI   ScienceOn
42 Miles, S. and Frewer, L. J. 2001. Investigating specific concerns about different food hazards. Food Qual. Prefer. 12:47-61.   DOI   ScienceOn
43 Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270.   DOI
44 Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125.   DOI   ScienceOn
45 Pal, K. K. and Gardener, B. M. 2006. Biological control of plant pathogens. Plant Health Instructor 2:1117-1142.
46 Rodriiguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339.   DOI   ScienceOn
47 Park, K. S. and Kim, C. H. 1992. Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Plant Pathol. J. 8:61-69.
48 Peres, N. A. R., Souza, N. L., Peever, T. L. and Timmer, L. W. 2004. Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Dis. 88:125-130.   DOI   ScienceOn
49 Raaijmakers, J., Vlami, M. and de Souza, J. 2002. Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537-547.   DOI
50 Rossolini, G. M., Schippa, S., Riccio, M. L., Berlutti, F., Macaskie, L. E. and Thalller, M. C. 1998. Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cell. Mol. Life Sci. 54:833-850.   DOI
51 Sahu, S. and Jana, B. 2000. Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. Ecol. Eng. 15:27-39.   DOI   ScienceOn
52 Sari, E., Etebarian, H. R. and Aminian, H. 2007. The effects of Bacillus pumilus, isolated from wheat rhizosphere, on resistance in wheat seedling roots against the take-all fungus, Gaeumannomyces graminis var. tritici. J. Phytopathol. 155:720-727.   DOI   ScienceOn
53 Schwyn, B. and Neilands, J. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56.   DOI   ScienceOn
54 Sokol, P. A., Ohman, D. E. and Iglewski, B. H. 1979. A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J. Clin. Microbiol. 9:538.
55 Vega, K. and Kalkum, M. 2012. Chitin, chitinase responses, and invasive fungal infections. Int. J. Microbiol. 2012:10.
56 Sundara, B., Natarajan, V. and Hari, K. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res. 77:43-49.   DOI   ScienceOn
57 Teather, R. M. and Wood, P. J. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43:777-780.
58 Than, P. P., Del Castillo, C. S., Yoshikawa, T. and Sakata, T. 2004. Extracellular protease production of bacteriolytic bacteria isolated from marine environments. Fish. Sci. 70:659-666.   DOI   ScienceOn
59 Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250-256.   DOI   ScienceOn
60 Wesseling, C., McConnell, R., Partanen, T. and Hogstedt, C. 1997. Agricultural pesticide use in developing countries:health effects and research needs. Int. J. Health Serv. 27:273-308.   DOI   ScienceOn
61 Wu, W. S., Wu, H. C. and Li, Y. L. 2007. Potential of Bacillus amyloliquefaciens for control of Alternaria cosmosa and A. patula of Cosmos sulfurous (Yellow Cosmos) and Tagetes patula (French marigold). J. Phytopathol. 155:670-675.   DOI   ScienceOn
62 Xu, S. J., Hong, S. J., Choi, W. and Kim, B. S. 2014. Antifungal activity of Paenibacillus kribbensis strain T-9 isolated from soils against several plant pathogenic fungi. Plant Pathol. J. 30:102-108.   DOI   ScienceOn
63 Yang, H. S., Sohn, H. B. and Chung, Y. R. 2002. Biological control of Pythium damping-off of cucumber by Bacillus stearothermophilus YC4194. Res. Plant Dis. 8:234-238.   DOI   ScienceOn