Browse > Article
http://dx.doi.org/10.5423/RPD.2016.22.2.81

Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp.  

Chung, Joon-hui (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Research in Plant Disease / v.22, no.2, 2016 , pp. 81-93 More about this Journal
Abstract
Out of plant-associated bacteria, certain plant growth-promoting bacteria (PGPB) have been reported to increase plant growth and productivity and to elicit induced resistance against plant pathogens. In this study, our objective was to broaden the range of applications of leaf-colonizing PGPB for foliar parts of road tress and pepper. Total 1,056 isolates of endospore-forming bacteria from tree phylloplanes were collected and evaluated for the enzymatic activities including protease, lipase, and chitinase and antifungal capacities against two fungal pathogens, Colletotrichum graminicola and Botrytis cinerea. Fourteen isolates classified as members of the bacilli group displayed the capacity to colonize pepper leaves after spraying inoculation. Three strains, 5B6, 8D4, and 8G12, and the mixtures were employed to evaluate growth promotion, yield increase and defence responses under field condition. Additionally, foliar application of bacterial preparation was applied to the road tress in Yuseong, Daejeon, South Korea, resulted in increase of chlorophyll contents and leaf thickness, compared with non-treated control. The foliar application of microbial preparation reduced brown shot-hole disease of Prunus serrulata L. and advanced leaf abscission in Ginkgo biloba L. Collectively, our results suggest that leaf-colonizing bacteria provide potential microbial agents to increase the performance of woody plants such as tree and pepper through spray application.
Keywords
Brown shot-hole disease; Foliar application; Phyllosphere; Plant growth-promoting bacteria; Woody plant;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Agrios, G. N. 1997. Plant Pathology. 4th ed. Academic Press, San Diego, CA, USA.
2 Altindag, M., Sahin, M., Esitken, A., Ercisli, S., Guleryuz, M., Donmez, M. F. and Sahin, F. 2006. Biological control of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacihaliloglu) by Bacillus, Burkholdria, and Pseudomonas application under in vitro and in vivo conditions. Biol. Control 38: 369-372.   DOI
3 Baker, C. J., Stavely, J. R., Thomas, C. A., Sasser, M. and MacFall, J. S. 1983. Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathology 73: 1148-1152.   DOI
4 Bashan, Y. and Holguin, G. 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem. 30: 1225-1228.   DOI
5 Behr, M., Humbeck, K., Hause, G., Deising, H. B. and Wirsel, S. G. 2010. The hemibiotroph Colletotrichum graminicola locally induces photosynthetically active green islands but globally accelerates senescence on aging maize leaves. Mol. Plant-Microbe Interact. 23: 879-892.   DOI
6 Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350.   DOI
7 Bishop, S. 2009. Plant cell biology: when autumn falls. Nat. Rev. Mol. Cell Biol. 10: 238-239.
8 Brock, A. K., Berger, B., Mewis, I. and Ruppel, S. 2013. Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb. Ecol. 65: 661-670.   DOI
9 Cakmakci, R., Kantar, F. and Sahin, F. 2001. Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J. Plant Nutr. Soil Sci. 164: 527-531.   DOI
10 Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E. and Lumyong, S. 2002. Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. Sci. Asia 28: 241-245.   DOI
11 Chernin, L. and Chet, I. R. 2002. Microbial enzymes in the biocontrol of plant pathogens and pests. In: Enzymes in the Environment: Activity, Ecology, and Applications, eds. by R. G. Burns and R. P. Dick, pp. 171-226. CRC Press, New York, NY, USA.
12 Choudhary, D. K., Prakash, A. and Johri, B. N. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J. Microbiol. 47: 289-297.   DOI
13 Cohen, A. C., Travaglia, C. N., Bottini, R. and Piccoli, P. N. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87: 455-462.   DOI
14 Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D. and Roberts, D. P. 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80: 115-123.   DOI
15 Cirvilleri, G., Spina, S., Iacona, C., Catara, A. and Muleo, R. 2008. Study of rhizosphere and phyllosphere bacterial community and resistance to bacterial canker in genetically engineered phytochrome A cherry plants. J. Plant Physiol. 165: 1107-1119.   DOI
16 Cohen, A. C., Bottini, R. and Piccoli, P. N. 2008. Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul. 54: 97-103.   DOI
17 Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. App. Environ. Microbiol. 71: 4951-4959.   DOI
18 Coste, S., Baraloto, C., Leroy, C., Marcon, e., Renaud, A., Richardson, A. D., Roggy, J. C., Schimann, H., Uddling, J. and Herault, B. 2010. Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Ann. Forest Sci. 67: 607.   DOI
19 Dawwam, G. E., Elbeltagy, A., Emara, H. M., Abbas, I. H. and Hassan, M. M. 2013. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann. Agric. Sci. 58: 195-201.
20 Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., von Mering, C. and Vorholt, J. A. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. U. S. A. 106: 16428-16433.   DOI
21 Donmez, M. F., Esitken, A., Yildiz, H. and Ercisli, S. 2011. Biocontrol of Botrytis cinerea on strawberry fruit by plant growth promoting bacteria. J. Anim. Plant Sci. 21: 758-763.
22 Enebak, S. A. and Carey, W. A. 2000. Evidence for induced systemic protection to fusiform rust in loblolly pine by plant growthpromoting rhizobacteria. Plant Dis. 84: 306-308.   DOI
23 Esitken, A., Karlidag, H., Ercisli, S. and Sahin, F. 2002. Effects of foliar application of Bacillus subtilis Osu-142 on the yield, growth and control of shot-hole disease (coryneum blight) of apricot. Gartenbauwissenschaft 67: 139-142.
24 Esitken, A., Pirlak, L., Turan, M. and Sahin, F. 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hortic. 110: 324-327.   DOI
25 Eyles, A., Bonello, P., Ganley, R. and Mohammed, C. 2010. Induced resistance to pests and pathogens in trees. New Phytol. 185:893-908.   DOI
26 Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9: 436-442.   DOI
27 Ganeshan, G. and Manoj Kumar, A. 2005. Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. J. Plant Interact. 1: 123-134.   DOI
28 Gomez-Cadenas, A., Tadeo, F. R., Talon, M. and Primo-Millo, E. 1996. Leaf abscission induced by ethylene in water-stressed intact seedlings of cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol. 112: 401-408.   DOI
29 Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica Online publication. doi: 10.6064/2012/963401.   DOI
30 Glick, B. R. and Bashan, Y. 1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 15: 353-378.   DOI
31 Han, S. H., Kang, B. R., Lee, J. H., Kim, H. J., Park, J. Y., Kim, J. J. and Kim, Y. C. 2012. Isolation and characterization of oligotrophic bacteria possessing induced systemic disease resistance against plant pathogens. Plant Pathol. J. 28: 68-74.   DOI
32 Hariprasad, P., Divakara, S. T. and Niranjana, S. R. 2011. Isolation and characterization of chitinolytic rhizobacteria for the management of Fusarium wilt in tomato. Crop Prot. 30: 1606-1612.   DOI
33 Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C. and Murata, Y. 2011. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiol. 156: 430-438.   DOI
34 Hsu, S. C. and Lockwood, J. L. 1975. Powdered chitin agar as a selective medium for enumeration of Actinomycetes in water and soil. Appl. Microbiol. 29: 422-426.
35 Jacobsen, B. J. 1997. Role of plant pathology in integrated pest management. Annu. Rev. Phytopathol. 35: 373-391.   DOI
36 Jacobsen, B. J., Zidack, N. K. and Larson, B. J. 2004. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94: 1272-1275.   DOI
37 Kinkel, L. L. 1997. Microbial population dynamics on leaves. Annu. Rev. Phytopathol. 35: 327-347.   DOI
38 Jiang, Z. Q., Guo, Y. H., Li, S. M., Qi, H. Y. and Guo, J. H. 2006. Evaluation of biocontrol efficiency of different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. Biol. Control 36: 216-223.   DOI
39 Kim, B. K., Chung, J. H., Kim, S. Y., Jeong, H., Kang, S. G., Kwon, S. K., Lee, C. H., Song, J. Y., Yu, D. S., Ryu, C. M. and Kim, J. F. 2012. Genome sequence of the leaf-colonizing Bacterium Bacillus sp. strain 5B6, isolated from a cherry tree. J. Bacteriol. 194: 3758-3759.   DOI
40 Kim, J. H., Woo, H. R., Kim, J., Lim, P. O., Lee, I. C., Choi, S. H., Hwang, D. and Nam, H. G. 2009. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323: 1053-1057.   DOI
41 Kishore, G. K. and Pande, S. 2007. Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Lett. Appl. Microbiol. 44: 98-105.   DOI
42 Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886.   DOI
43 Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., von Mering, C. and Vorholt, J. A. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6: 1378-1390.   DOI
44 Korsten, L., De Villiers, E. E., Wehner, F. C. and Kotze, J. M. 1997. Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Dis. 81: 455-459.   DOI
45 Lee, H. J., Kim, J. S., Yoo, S. J., Kang, E. Y., Han, S. H., Yang, K. Y., Kim, Y. C., McSpadden Gardener, B. and Kang, H. 2012. Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses. Plant Physiol. Biochem. 60: 46-52.   DOI
46 Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J. and Borriss, R. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186: 1084-1096.   DOI
47 Kucheryava, N., Fiss, M., Auling, G. and Kroppenstedt, R. M. 1999. Isolation and characterization of epiphytic bacteria from the phyllosphere of apple, antagonistic in vitro to Venturia inaequalis, the causal agent of apple scab. Syst. Appl. Microbiol. 22: 472-478.   DOI
48 Lee, D. W., Koh, Y. S., Kim, K. J., Kim, B. C., Choi, H. J., Kim, D. S., Suhartono, M. T. and Pyun, Y. R. 1999. Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 179: 393-400.   DOI
49 Lee, K. J., Kamala-Kannan, S., Sub, H. S., Seong, C. K. and Lee, G. W. 2008. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J. Microbiol. Biotechnol. 24: 1139-1145.   DOI
50 Lee, S. M., Chung, J. h. and Ryu, C. M. 2015. Augmenting plant immune responses and biological control by microbial determinants. Res. Plant Dis. 21: 161-179.   DOI
51 Leveau, J. J. H. 2015. Life of microbes on aerial plant parts. In: Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture, ed. by B. Lugtenberg, pp. 17-24. Springer International Publishing, Cham, Germany.
52 Lugtenberg, B. J., Chin-A-Woeng, T. F. and Bloemberg, G. V. 2002. Microbe-plant interactions: principles and mechanisms. Anton. Leeuw. 81: 373-383.   DOI
53 Lindow, S. E. and Brandl, M. T. 2003. Microbiology of the phyllosphere. Appl. Environ. Bicrobiol. 69: 1875-1883.   DOI
54 Lindow, S. E. and Leveau, J. H. 2002. Phyllosphere microbiology. Curr. Opin. Biotechnol. 13: 238-243.   DOI
55 Ling, Q., Huang, W. and Jarvis, P. 2011. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth. Res. 107: 209-214.   DOI
56 Ma, Z., Proffer, T. J., Jacobs, J. L. and Sundin, G. W. 2006. Overex-pression of the $14{\alpha}$-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl. Environ. Microbiol. 72: 2581-2585.   DOI
57 Maksimov, I. V., Abizgil'dina, R. R. and Pusenkova, L. I. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl. Biochem. Microbiol. 47: 333-345.   DOI
58 Neeraja, C., Anil, K., Purushotham, P., Suma, K., Sarma, P., Moerschbacher, B. M. and Podile, A. R. 2010. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit. Rev. Biotechnol. 30: 231-241.   DOI
59 Obradovic, A., Jones, J. B., Momol, M. T., Balogh, B. and Olson, S. M. 2004. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis. 88: 736-740.   DOI
60 Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580.   DOI
61 Reid, M. S. 1985. Ethylene and abscission. HortScience 20: 45-50.
62 Planchamp, C., Glauser, G. and Mauch-Mani, B. 2015. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front. Plant Sci. 5: 719.
63 Pusey, P. L. 1989. Use of Bacillus subtilis and related organisms as biofungicides. Pestic. Sci. 27: 133-140.   DOI
64 Raupach, G. S. and Kloepper, J. W. 1998. Mixtures of plant growthpromoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88: 1158-1164.   DOI
65 Ryu, C. M., Shin, J. N., Qi, W., Ruhong, M., Kim, E. J. and Pan, J. G. 2011. Potential for augmentation of fruit quality by foliar application of bacilli spores on apple tree. Plant Pathol. J. 27: 164-169.   DOI
66 Sahin, F. and Miller, S. 1998. Resistance in Capsicum pubescens to Xanthomonas campestris pv. vesicatoria pepper race 6. Plant Dis. 82: 794-799.   DOI
67 Sakamoto, M., Munemura, I., Tomita, R. and Kobayashi, K. 2008a. Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J. 56: 13-27.   DOI
68 Sakamoto, M., Munemura, I., Tomita, R. and Kobayashi, K. 2008b. Reactive oxygen species in leaf abscission signaling. Plant Signal. Behav. 3: 1014-1015.   DOI
69 Saraf, M., Pandya, U. and Thakkar, A. 2014. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol. Res. 169: 18-29.   DOI
70 Silva, H. S. A., Romeiro, R. S., Carrer Filho, R., Pereira, J. L. A., Mizubuti, E. S. G. and Mounteer, A. 2004. Induction of systemic resistance by Bacillus cereus against tomato foliar diseases under field conditions. J. Phytopathol. 152: 371-375.   DOI
71 Smart, C. M. 1994. Gene expression during leaf senescence. New Phytol. 126: 419-448.   DOI
72 Stefan, M., Munteanu, N., Stoleru, V. and Mihasan, M. 2013. Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status and yield of runner bean. Rom. Biotech. Lett. 18: 8132-8143.
73 Sun, X., Griffith, M., Pasternak, J. J. and Glick, B. R. 1995. Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 41: 776-784.   DOI
74 Tortora, M. L., Diaz-Ricci, J. C. and Pedraza, R. O. 2011. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch. Microbiol. 193: 275-286.   DOI
75 Uddling, J., Gelang-Alfredsson, J., Piikki, K. and Pleijel, H. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 91: 37-46.   DOI
76 Vorholt, J. A. 2012. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10: 828-840.   DOI
77 Wang, Y., Ohara, Y., Nakayashiki, H., Tosa, Y. and Mayama, S. 2005. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol. Plant-Microbe Interact. 18: 385-396.   DOI
78 Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511.   DOI
79 Yi, H. S., Yang, J. W., Choi, H. K., Ghim, S. Y. and Ryu, C. M. 2012. Benzothiadiazole-elicited defense priming and systemic acquired resistance against bacterial and viral pathogens of pepper under field conditions. Plant Biotechnol. Rep. 6: 373-380.   DOI
80 Xue-Xuan, X., Hong-Bo, S., Yuan-Yuan, M., Gang, X., Jun-Na, S., Dong-Gang, G. and Cheng-Jiang, R. 2010. Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit. Rev. Biotechnol. 30: 222-230.   DOI
81 Zehnder, G. W., Murphy, J. F., Sikora, E. J. and Kloepper, J. W. 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107: 39-50.   DOI
82 Zhigila, D. A., AbdulRahaman, A. A., Kolawole, O. S. and Oladele, F. A. 2014. Fruit morphology as taxonomic features in five varieties of Capsicum annuum L. Solanaceae. J. Bot. 2014. doi: 10.1155/2014/540868.   DOI