• Title/Summary/Keyword: anti-bonding

Search Result 52, Processing Time 0.022 seconds

Bonding And Anti-bonding Nature of Magnetic Semiconductor Thin Film of Fe(TCNQ:tetracyanoquinodimethane)

  • Jo, Junhyeon;Jin, Mi-jin;Park, Jungmin;Modepalli, Vijayakumar;Yoo, Jung-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.294-294
    • /
    • 2014
  • Developing magnetic thin films with desirable physical properties is a key step to promote research in spintronics. Organic-based magnetic material is a relatively new kind of materials which has magnetic properties in a molecular and microscopic level. These materials have been constructed by the coordination between 3d transition metal and organic materials producing long-range magnetic orders with a relatively high transition temperature. However, these materials were mostly synthesized as a form of powder, which is difficult to study for their physical properties as well as apply for electronic/spintronic devices. In this study, we have employed physical vapor deposition (PVD) to develop a new organic-based hybrid magnetic film that is achieved by the coordination of Fe and tetracyanoquinodimethane (TCNQ). The IR spectra of the grown film show modified CN vibration modes in TCNQ, which suggest a strong bonding between Fe and TCNQ. The thin film has both ferromagnetic and semiconducting behaviors, which is suitable for molecular spintronic applications. The high resolution photoemission (HRPES) spectra also show shift of 1s peak point of nitrogen and the carbon 1s peaks display traces of charge transfer from Fe to TCNQ as well as shake-up features, which suggest strong bonding and anti-bonding nature of coordination between Fe and TCNQ.

  • PDF

Effect on Al Concentration of AlGaAs Ternary Alloy (AlGaAs합금의 Al 도핑농도에 대한 효과)

  • Kang, B.S.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.125-129
    • /
    • 2021
  • We investigated the electronic property and atomic structure for chalcopyrite (CH) AlxGa1-xAs semiconductor by using first-principles FPLMTO method. The CH-AlxGa1-xAs exhibits a p-type semiconductor with a direct band-gap. For low Al concentration unoccupied hole-carriers are induced, but for high Al concentration it is formed a localized bonding or anti-bonding state below Fermi level. The hybridization of Al(3s)-Ga(4s, or 4p) is larger than that of Al(3s)-As(4s, or 4p). And the Al film on As-terminated surface, Al/AsGa(001), is more energetically favorable one than that on Ga-terminated (001) surface. Consequently, the band-gap of CH-AlxGa1-xAs system increases exponentially with increasing Al concentration. The change of lattice parameter is shown two different configurations with increasing Al concentration. The calculated lattice parameters for CH-AlxGa1-xAs system are compared to the experimental ones of zinc-blend GaAs and AlAs.

The MO Study about Interaction of cis-Diamminedichloroplatinum (cis-DDP) Complexes with DNA base, 1-Methylcytosine, for Development of Anti-Tumor Drugs (항암성물질의 개발을 위한 cis-Diamminedichloroplatinum (cis-DDP) 류와 DNA base인 1-Methylcytosine의 Interaction에 관한 분자궤도함수론적 연구)

  • Kim, Ui Rak;Kim, Sang Hae;Edward A. Boudreaux
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.331-339
    • /
    • 1990
  • It has been studied that relations between electronic structure and anti-tumor activity by variation of amine group in cis-diamminedichloroplatinum (Ⅱ) complexes. We were also interested in these Pt (Ⅱ) complexes interaction with 1-methylcytosine of DNA base and the electronic structure of these complexes in order to understand the mechanism of the metal-nucleobases interaction. The results showed that net charge of center metal in Pt complexes effect anti-tumor activity. The mechanisgm of the bonding between metal and ligands largely based on charge transfer from ligand to metal atom. Furthermore, the established molecular orbitals showed that metal 6p-orbitals played an important role in the bonding scheme for the interactions between platinum (Ⅱ) complexes and 1-methylcytosine. We also found that the stronger Pt-N3 bonding strength became, the better anti-tumor agents were.

  • PDF

Anti-washout Grouts for Underwater Sealing of Karst Cavities and Construction Research Tendencies (수중 불분리성 그라우트 개발 기술 동향)

  • Baluch, Khaqan;Kim, Jung-Gyu;Kim, Jong-Gwan;Yu, Ji-Yun;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.46-52
    • /
    • 2020
  • Although anti-washout grouts are used extensively in underwater targets, major constraints continue to be associated with their use. These include poor bonding strength, poor pumpability, and loss of high strength in everyday engineering applications. In this study, based on the literature pertaining to self-compacted, non-dispersive, anti-washout grouts, a review of research trends in anti-washout grouts for underwater construction and sealing of karst cavities was carried out in order to determine the problems faced in this field. Grouts used under water suffer a loss of strength and bonding strength in comparison to grouts cast in air. Researchers are designing high-viscosity grouts to overcome the inrush of water and seal karst cavities; however, in doing so, they have inadvertently caused serious problems pertaining to the pumpability of these grouts and concretes in deep target locations. Thus, the majority of the anti-washout grouts and concretes that have been developed are not applicable to deep target environments, instead being suitable for only near-surface targets.

2D and 3D Topology Optimization with Target Frequency and Modes of Ultrasonic Horn for Flip-chip Bonding (플립칩 접합용 초음파 혼의 목표 주파수와 모드를 고려한 2차원 및 3차원 위상최적화 설계)

  • Ha, Chang Yong;Lee, Soo Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.84-91
    • /
    • 2013
  • Ultrasonic flip-chip bonding needs a precise bonding tool which delivers ultrasonic energy into chip bumps effectively to use the selected resonance mode and frequency of the horn structure. The bonding tool is excited at the resonance frequency and the input and output ports should locate at the anti-nodal points of the resonance mode. In this study, we propose new design method with topology optimization for ultrasonic bonding tools. The SIMP(solid isotropic material with penalization) method is used to formulate topology optimization and OC(optimal criteria) algorithm is adopted for the update scheme. MAC(modal assurance criterion) tracking is used for the target frequency and mode. We fabricate two prototypes of ultrasonic tools which are based on 3D optimization models after reviewing 2D and 3D topology optimization results. The prototypes are satisfied with the ultrasonic frequency and vibration amplitude as the ultrasonic bonding tools.

SEM/EDS Evaluation of Gold Bonding Agent Applied on Non-precious Alloys and Cast CP-Ti (도재 소부용 비귀금속 합금과 티타늄에 적용한 Gold Bonding Agent의 전자현미경적 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • The purposed of this study was to investigate the effect of Gold bonding agent as intermediate layer between metal substrate and ceramic coating. Gold bonding agent used to seal off any surface porosity, to mask the greyish color of the metal, and to provide an underlying bright golden hue to the ceramic coverage. The adhesion between metal substrate and ceramic is related to diffusion of oxygen during ceramic firing. The oxide layer produced on non-precious alloy anti titanium was considered to have a potentially adverse effect on metal-ceramic bonding. The oxidation characteristics of titanium and non-precious alloys are the main problem. Every group were divided into test and control groups. Control groups are carried out process of degassing for product oxide layer. Au coating was applied on each Ni-Cr, Co-Cr alloys and cp-Ti specimens with difference surface condition or degassing. Specimens surfaces and cutting plane was characterized by SEM/EDS. Results suggested that Au coating is effective barriers to protect metal oxidation during ceramic firing.

  • PDF

Epigallocatechin 3-gallate Binds to Human Salivary α-Amylase with Complex Hydrogen Bonding Interactions

  • Lee, Jee-Young;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2222-2226
    • /
    • 2011
  • Amylase is a digestive enzyme that catalyses the starch into sugar. It has been reported that the green tea flavonoid (or polyphenols) (-)-epigallocatechin 3-gallate (EGCG) inhibits human salivary ${\alpha}$-amylase (HSA) and induced anti-nutritional effects. In this study, we performed docking study for seven EGCG-like flavonoids and HSA to understand the interaction mechanism of HSA and EGCG and suggest new possible flavonoid inhibitors of HSA. As a result, EGCG and (-)-epicatechin gallate (ECG) bind to HSA with complex hydrogen bonding interactions. These hydrogen bonding interactions are important for inhibitory activity of EGCG against HSA. We suggested that ECG can be a potent inhibitor of HSA. This study will be helpful to understand the mechanism of inhibition of HSA by EGCG and give insights to develop therapeutic strategies against diabetes.

Effect of Ag Nanolayer in Low Temperature Cu/Ag-Ag/Cu Bonding (저온 Cu/Ag-Ag/Cu 본딩에서의 Ag 나노막 효과)

  • Kim, Yoonho;Park, Seungmin;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.59-64
    • /
    • 2021
  • System-in-package (SIP) technology using heterogeneous integration is becoming the key of next-generation semiconductor packaging technology, and the development of low temperature Cu bonding is very important for high-performance and fine-pitch SIP interconnects. In this study the low temperature Cu bonding and the anti-oxidation effect of copper using porous Ag nanolayer were investigated. It has been found that Cu diffuses into Ag faster than Ag diffuses into Cu at the temperatures from 100℃ to 200℃, indicating that solid state diffusion bonding of copper is possible at low temperatures. Cu bonding using Ag nanolayer was carried out at 200℃, and the shear strength after bonding was measured to be 23.27 MPa.

Excited State Dynamics of Curcumin and Solvent Hydrogen Bonding

  • Yang, Il-Seung;Jin, Seung-Min;Kang, Jun-Hee;Ramanathan, Venkatnarayan;Kim, Hyung-Min;Suh, Yung-Doug;Kim, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3090-3093
    • /
    • 2011
  • Curcumin is a natural product with antioxidant, anti-inflammatory, antiviral and antifungal functions. As it is known that the excited state intramolecular hydrogen transfer of curcumin are related to its medicinal antioxidant mechanism, we investigated its excited state dynamics by using femtosecond transient absorption spectroscopy in an effort to understand the molecule's therapeutic effect in terms of its photophysics and photochemistry. We found that stronger intermolecular hydrogen bonding with solvents weakens the intramolecular hydrogen bonding and decelerates the dynamical process of the enolic hydrogen. Exceptions are found in methanol and ethylene glycol due to their nature as simultaneous hydrogen bonding donor-acceptor and high viscosity solvent, respectively.

THE ANTICARIOGENIC EFFECT OF F IN PRIMER, BONDING AGENT AND COMPOSITE RESIN IN THE CAVOSURFACE ENAMEDL AREA (Primer Bonding agent, 복합레진 내의 볼소의 법랑질에 대한 항우식 작용)

  • Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.635-641
    • /
    • 1996
  • This study was designed to evaluate the anti cariogenic effect of F in primers, bonding agents, composite resins or glass ionomer cements in enamel. Twenty-five extracted teeth were selected and a cavity was prepared on either the buccal or the lingual surface of each tooth. After pumicing and etching, the samples were divided into 5 groups. In group A, the samples were primed, bonded and filled with ART bond and Brilliant Enamel (Coltene, Switzerland). Group B composed of Optibond and Herculited XRV (Kerr, USA), group C composed of Syntac and Tetric(Vivadent, Lichtenstein), and group D composed of Scotch-bond Multipurpose and Z 100 (3M, YSA). In group E, the samples were filled with glass ionomer cement (Fuji II LC, Japan), All surfaces except the 2mm beyond the cavosurface margin of the sample were protected, and samples were then put into an acid buffer for 3 days to develop the initial caries. The samples were then sectioned through the filling body into thin wafers and then examined with a polarizing microscope under water imbibition. The fluoride in primer, bonding agent, or composite filling material did not prevent the initial caries in the enamel area adjacent to the filling body whereas the fluoride in the glass ionomer did prevent the initial stage caries.

  • PDF