DOI QR코드

DOI QR Code

Excited State Dynamics of Curcumin and Solvent Hydrogen Bonding

  • Yang, Il-Seung (Department of Chemistry, Seoul National University) ;
  • Jin, Seung-Min (NanoBio Fusion Research Center, Korea Research Institute of Chemical Technology) ;
  • Kang, Jun-Hee (WCU Department of Biophysics and Chemical Biology, Seoul National University) ;
  • Ramanathan, Venkatnarayan (Department of Chemistry, Seoul National University) ;
  • Kim, Hyung-Min (NanoBio Fusion Research Center, Korea Research Institute of Chemical Technology) ;
  • Suh, Yung-Doug (NanoBio Fusion Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Seong-Keun (Department of Chemistry, Seoul National University)
  • Received : 2011.03.29
  • Accepted : 2011.07.08
  • Published : 2011.08.20

Abstract

Curcumin is a natural product with antioxidant, anti-inflammatory, antiviral and antifungal functions. As it is known that the excited state intramolecular hydrogen transfer of curcumin are related to its medicinal antioxidant mechanism, we investigated its excited state dynamics by using femtosecond transient absorption spectroscopy in an effort to understand the molecule's therapeutic effect in terms of its photophysics and photochemistry. We found that stronger intermolecular hydrogen bonding with solvents weakens the intramolecular hydrogen bonding and decelerates the dynamical process of the enolic hydrogen. Exceptions are found in methanol and ethylene glycol due to their nature as simultaneous hydrogen bonding donor-acceptor and high viscosity solvent, respectively.

Keywords

References

  1. Ruby, A. J.; Kuttan, G.; Babu, K. D.; Rajasekharan, K. N.; Kuttan, R. Cancer Lett. 1995, 94, 79-83. https://doi.org/10.1016/0304-3835(95)03827-J
  2. Lantz, R. C.; Chen, G. J.; Solyom, A. M.; Jolad, S. D.; Timmermann, B. N. Phytomedicine 2005, 12, 445-452. https://doi.org/10.1016/j.phymed.2003.12.011
  3. Aggarwal, B. B.; Kumar, A.; Bharti, A. C. Anticancer Res. 2003, 23, 363-398.
  4. Shi, M. X.; Cai, Q. F.; Yao, L. M.; Mao, Y. B.; Ming, Y. L.; Ouyang, G. L. Cell. Biol. Int. 2006, 30, 221-226. https://doi.org/10.1016/j.cellbi.2005.10.024
  5. Goel, A.; Kunnumakkara, A. B.; Aggarwal, B. B. Biochem Pharmacol. 2008, 75, 787-809. https://doi.org/10.1016/j.bcp.2007.08.016
  6. Yang, F. S.; Lim, G. P.; Begum, A. N.; Ubeda, O. J.; Simmons, M.R.; Ambegaokar, S. S.; Chen, P. P.; Kayed, R.; Glabe, C. G.; Frautschy, S. A.; Cole, G. M. J. Biol. Chem. 2005, 280, 5892-5901. https://doi.org/10.1074/jbc.M404751200
  7. Masuda, M.; Suzuki, N.; Taniguchi, S.; Oikawa, T.; Nonaka, T.; Iwatsubo, T.; Hisanaga, S.; Goedert, M.; Hasegawa, M. Biochemistry-Us 2006, 45, 6085-6094. https://doi.org/10.1021/bi0600749
  8. Payton, F.; Sandusky, P.; Alworth, W. L. J. Nat. Prod. 2007, 70, 143-146. https://doi.org/10.1021/np060263s
  9. Bruzell, E. M.; Morisbak, E.; Tonnesen, H. H. Photoch. Photobio. Sci. 2005, 4, 523-530. https://doi.org/10.1039/b503397g
  10. Das, K. C.; Das, C. K. Biochem. Bioph. Res. Co. 2002, 295, 62-66. https://doi.org/10.1016/S0006-291X(02)00633-2
  11. Gorman, A. A.; Hamblett, I.; Srinivasan, V. S.; Wood, P. D. Photochem. Photobiol. 1994, 59, 389-398. https://doi.org/10.1111/j.1751-1097.1994.tb05053.x
  12. Chignell, C. F.; Bilski, P.; Reszka, K. J.; Motten, A. G.; Sik, R. H.; Dahl, T. A. Photochem. Photobiol. 1994, 59, 295-302. https://doi.org/10.1111/j.1751-1097.1994.tb05037.x
  13. Das, K.; English, D. S.; Petrich, J. W. J. Phys. Chem. A 1997, 101, 3241-3245. https://doi.org/10.1021/jp9630479
  14. English, D. S.; Das, K.; Ashby, K. D.; Park, J.; Petrich, J. W.; Castner, E. W. J. Am. Chem. Soc. 1997, 119, 11585-11590. https://doi.org/10.1021/ja9721071
  15. English, D. S.; Das, K.; Petrich, J. W. Abstr. Pap. Am. Chem. S 1997, 213, 405-PHYS.
  16. Petrich, J. W. Int. Rev. Phys. Chem. 2000, 19, 479-500. https://doi.org/10.1080/01442350050034207
  17. Smirnov, A. V.; Das, K.; English, D. S.; Wan, Z.; Kraus, G. A.; Petrich, J. W. J. Phys. Chem. A 1999, 103, 7949-7957. https://doi.org/10.1021/jp992436a
  18. Khopde, S. M.; Priyadarsini, K.; Palit, D. K.; Mukherjee, T. Photochem. Photobiol. 2000, 72, 625-631. https://doi.org/10.1562/0031-8655(2000)072<0625:EOSOTE>2.0.CO;2
  19. Ortica, F.; Rodgers, M. A. J. Photochem. Photobiol. 2001, 74, 745-751.
  20. Adhikary, R.; Mukherjee, P.; Kee, T. W.; Petrich, J. W. J. Phys. Chem. B 2009, 113, 5255-5261. https://doi.org/10.1021/jp901234z
  21. Ghosh, R.; Mondal, J. A.; Palit, D. K. J. Phys. Chem. B 2010, 114, 12129-12143. https://doi.org/10.1021/jp1038249
  22. Jin, S. M.; Lee, Y. J.; Yu, J. W.; Kim, S. K. B. Korean Chem. Soc. 2004, 25, 1829-1832. https://doi.org/10.5012/bkcs.2004.25.12.1829
  23. Nardo, L.; Paderno, R.; Andreoni, A.; Masson, M.; Haukvik, T.; Tonnesen, H. H. Spectrosc-Int. J. 2008, 22, 187-198.
  24. Bong, P. H. B. Korean Chem. Soc. 2000, 21, 81-86.
  25. Priyadarsini, K. I. J. Photoch. Photobio. C 2009, 10, 81-95. https://doi.org/10.1016/j.jphotochemrev.2009.05.001
  26. Horng, M. L.; Gardecki, J. A.; Papazyan, A.; Maroncelli, M. J. Phys. Chem-Us 1995, 99, 17311-17337. https://doi.org/10.1021/j100048a004
  27. Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents: Physical Properties and Methods of Purification; John Wiley & Sons, Inc.: New York, 1986.
  28. Marcus, Y. J Solution Chem. 1991, 20, 929-944. https://doi.org/10.1007/BF01074953

Cited by

  1. Time-Resolved Fluorescence vol.89, pp.5, 2013, https://doi.org/10.1111/php.12129
  2. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs vol.5, pp.3, 2015, https://doi.org/10.3390/bios5030367
  3. The Effect of Solvent on Tautomerism, Acidity and Radical Stability of Curcumin and Its Derivatives Based on Thermodynamic Quantities vol.45, pp.7, 2016, https://doi.org/10.1007/s10953-016-0481-y