• Title/Summary/Keyword: anti corrosion

Search Result 340, Processing Time 0.021 seconds

Effects of Sulfuric Acid Concentration and Alloying Elements on the Corrosion Resistance of Cu-bearing low Alloy Steels

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.154-165
    • /
    • 2018
  • During the process of sulfur dioxide removal, flue gas desulfurization equipment provides a serious internal corrosion environment in creating sulfuric acid dew point corrosion. Therefore, the utilities must use the excellent corrosion resistance of steel desulfurization facilities in the atmosphere. Until now, the trend in developing anti-sulfuric acid steels was essentially the addition of Cu, in order to improve the corrosion resistance. The experimental alloy used in this study is Fe-0.03C-1.0Mn-0.3Si-0.15Ni-0.31Cu alloys to which Ru, Zn and Ta were added. In order to investigate the effect of $H_2SO_4$ concentration and the alloying elements, chemical and electrochemical corrosion tests were performed. In a low concentration of $H_2SO_4$ solution, the major factor affecting the corrosion rate of low alloy steels was the exchange current density for $H^+/H_2$ reaction, while in a high concentration of $H_2SO_4$ solution, the major factors were the thin and dense passive film and resulting passivation behavior. The alloying elements reducing the exchange current density in low concentration of $H_2SO_4$, and the alloying elements decreasing the passive current density in high concentration of $H_2SO_4$, together play an important role in determining the corrosion rate of Cu-bearing low alloy steels in a wide range of $H_2SO_4$ solution.

Study on Evaluation of Degrease Performance on the Interface between Oil and Alloy (탈지 정도에 대한 방청유-금속 계면의 영향성 평가)

  • Choi, Wonyoung;Kim, Moonsu;Yoo, Hyeonseok;Song, Yeongyun;Jeong, Yong-Gyun;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.371-379
    • /
    • 2021
  • The use of anti-corrosive oil (AC) is inevitable for production of industrial steels to prevent corrosion. The AC is degreased before application of steels, which crucially effects on final products, such as automobile, electricity etc. However, qualitative/quantitative evaluation of degreasing performance are steal insufficient. In this study, degreasing performance of anti-corrosive oil on steel have been studied through X-ray photon spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Commercial automotive steels (AMS) are coated with 4 different anti-corrosive oils (namely AC1-AC4). In XPS, intensity of C1s peak remained after degreasing indirectly indicates incomplete degreasing. Thus, higher C1s peak intensity means less effective degreasing by degreasing agent. peak intensity of C1s peak shows opposite tendency of peak intensity of O1s. We found that EIS analysis is not applicable to mild steel (such as AMS1) due to corrosion during measurement. However, alloy steel can be fully analyzed by EIS and XPS depth profile.

Wettability of Lubricant-Impregnated Electroplated Zinc Surface with Nanostructure (윤활유가 침지된 나노구조 전기아연도금층의 젖음성)

  • Jung, Haechang;Kim, Wang Ryeol;Jeong, Chanyoung;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Electrodeposited zinc layer is widely used as a sacrificial anode for a corrosion protection of steel. In this study, we modified the surface of electrodeposited zinc to have a hydrophobicity, which shows various advanced functionalities, such as anti-corrosion, anti-biofouling, anti-icing and self-cleaning, due to its repellency to liquids. Superhydrophobicity was realized on electrodeposited zinc layer with a hydrothermal treatment, creating nanostructures on the surface, and following Teflon coating. The superhydrophobic surface shows a great repellency to water with high surface tension, while liquid droplets with low surface tension easily adhered on the superhydrophobic surface. However, immiscible lubricant-impregnated superhydrophobic surface shows a great repellency to various liquids, regardless of their surface tension. Therefore, it is expected that the lubricant-impregnated surface can be an alternative of superhydrophobic surface, which have a drawback for some liquids with a low surface tension.

Characteristics Comparison of Anodic Films Formed on Mg-Al Alloys by Non-chromate Surface Treatment

  • Kim, Seong-Jong;Jang, Seok-Ki;Kim, Jeong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.300-308
    • /
    • 2004
  • The formation mechanism of anodic oxide films on Mg alloys when anodized in NaOH solution. was investigated by focusing on the effects of anodizing potential. Al content. and anodizing time. Pure Mg and Mg-Al alloys were anodized for 10 min at various potentials in NaOH solutions. $Mg(OH)_2$ was generated by an active dissolution reaction at the surface. and the product was affected by temperature. The intensity ratio of $Mg(OH)_2$ in the XRD analysis decreased with increasing applied potential. while that of MgO increased. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. And the intensity ratio of $Mg_{17}Al_{12}$/Mg increased with aluminum content in Mg-Al alloys. During anodizing. the active dissolution reaction occurred preferentially in ${\beta}\;phase(Mg_{17}Al_{12})$ until about 4 mins. and then the current density increased radually until 7 mins. The dissolution reaction progressed in a phase(Mg) which not formed the intermetallic compound. which had a lower Al content. In the anodic polarization test of $0.017\;mol{\cdot}dm^-3$ NaCl and $0.1\;mol{\cdot}dm^-3\;Na_2SO_4$ at 298 K. the current density of Mg-15 mass% Al alloy anodized for 10 mins increased. since the anodic film that forms on the a phase is a non-compacted film. The anodic film on the phase for 30 mins was a compact film as compared with that for 10 mins.

Corrosion Protection of Rebars Using High Durability Polymer Cementitious Materials for Environmental Load Reduction (환경부하저감형 고내구성 폴리머 시멘트계 재료를 이용한 철근 부식저감기술)

  • Kim, Wan-Ki;Chung, Seung-Jin
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.131-137
    • /
    • 2010
  • The building industry must aim at high-durability and sustainability. A holistic life cycle based approach is recommended to reduce the environmental load. In recent years, technical innovations in the construction industry have advanced to a great extent, and caused the active research and development of high-performance and multifunctional construction materials. Nowadays, various polymer powders have been commercialized to manufacture construction materials in the form of prepackaged-type products, which have rapidly been developed for lack of skilled workmen in construction sites. Recently, terpolymer powders of improved quality have been developed and commercialized as cement modifiers. And, hydrocalumite is a material that can adsorb the chloride ions (Cl-) causing the corrosion of reinforcing bars and liberate the nitrite ions (NO2-) inhibiting the corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. The purpose of this study is to ascertain the self-corrosion inhibition function of polymer-modified mortars using redispersible powders with hydrocalumite. Polymer-modified mortars using VA/E/MMA and VAE redispersible powders are prepared with various calumite contents and polymer-binder ratios, and tested for chloride ion penetration depth, corrosion inhibition. As a result, regardless of the polymer-binder ratio, the replacement of ordinary portland cement with hydrocalumite has a marked effect on the corrosion-inhibiting property of the polymer-modified mortars. Anti-corrosion effect of polymer-modified mortars using VA/E/MMA terpolymer powder with hydrocalumite is higher than that of VAE copolymer powder.

Evaluation of Load Capacity Reduction in RC Beam with Corroded FRP Hybrid Bar and Steel (철근부식을 고려한 FRP Hybrid Bar 및 일반 철근을 가진 RC 보의 내력저하 평가)

  • Oh, Kyung-Suk;Moon, Jin-Man;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Steel corrosion is a very significant problem both to durability and structural safety since reinforcement has to support loads in tensile region in RC(Reinforced Concrete) member. In the paper, newly invented FRP Hybrid Bar and normal steel are embedded in RC beam member, and ICM (Impressed Current Method) is adopted for corrosion acceleration. Utilizing the previous theory of Faraday's Law, corrosion amount is calculated and flexural tests are performed for RC beam with FRP Hybrid Bar and steel, respectively. Corrosion amount level of 4.9~7.8% is measured in normal RC member and the related reduction of flexural capacity is measured to be -25.4~-50.8%, however there are no significant reduction of flexural capacity and corrosion initiation in RC samples with FRP Hybrid Bar due to high resistance of epoxy-coated steel to corrosion initiation. In the accelerated corrosion test, excellent performance of anti-corrosion and bonding with concrete are evaluated but durability evaluation through long-term submerged test is required for actual utilization.

A Study on the Anti-corrosion Properties of Organic and Inorganic Inhibitor by Electrochemical Evaluation Method in Saturated Aqueous Solution of Calcium Hydroxide (포화 수산화칼슘 수용액 내에서의 무기계 및 유기계 방청제의 전기화학적 방식 특성평가)

  • Kim, Soo-Young;Ryu, Hwa-Sung;Kim, Sung-Kil;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.66-74
    • /
    • 2013
  • In this study, corrosion potential ($E_{corr}$), corrosion rate, and polarization resistance were measured aimed at inorganic inhibitors (passive film type) and organic inhibitors (absorption type). The experiment was conducted using potentiostat for the variable molar ratio and chloride ion concentration of the components of inhibitors in an aqueous solution of saturated calcium hydroxide targeting corrosion. As a result, it was possible to ensure an anticorrosive performance of at least a 1.2 molar ratio of inorganic inhibitors. Also, the organic inhibitors ensured the prevention of the anticorrosive performance of at least about a 0.3 molar ratio. It also showed the tendency that between polarization resistance and corrosion rate, Ecorr and corrosion rate is inversely proportional to the linear. Conversely, the tendency between polarization resistance and Ecorr is proportional to the linear. Also, a distinct difference in organic and inorganic inhibitors' relationship to Ecorr, corrosion rate, and polarization resistance was not shown.

Corrosion of Reinforcing Steel in Simulated Pore Solution with Chloride Ion (염분농도에 따른 콘크리트 모사 세공용액에서의 철근 부식특성)

  • Nam, Sang-Cheol;Cho, Won-Il;Cho, Byung-Won;Yun, Kyung-Suk;Chun, Hai-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.667-673
    • /
    • 1998
  • Rebar corrosion in a simulated pore solution (SPS) with chloride ion was analyzed by Tafel and AC impedance method and corrosion effects of surface roughness and iron oxide layer were also investigated. Corrosion estimation of rebar by electrochemical impedance spectroscopy is very useful, and the measured value can be adapted to proposed electrochemical equivalent circuit model. Corrosion potential increased to the cathodic direction as the concentration of chloride ions increased and corrosion current had the same tendency as above. Surface films were analyzed with scanning electron microscope and Auger electron spectroscopy. Thermally oxidized layer by torch flame for 15 sec was very poor at anti-corrosive property. The corrosion rate of rebar increased as the surface roughness increased. Also, higher temperatures above RT of SPS in initial stage caused a rebar to be corroded faster.

  • PDF

A study on the Properties of Composite Systems Using Polymer-Modified Mortar and Epoxy Resins for Waterproofing and Anti-Corrosion of Concrete Structures (시멘트 혼입 폴리머와 에폭시수지를 복합한 수처리 콘크리트구조물용 방수방식재료의 성능평가에 관한 연구)

  • Bae Kee-Sun;Jang Sung-Joo;Oh Sang-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.3-10
    • /
    • 2005
  • The purpose of this study is to investigate the properties of composite systems using polymer cement and epoxy resins for waterproofing and anti-corrosion to concrete structures such as water supply facilities and sewage-works. For the waterproofing and anti-corrosion of concrete structures, there can be required various properties such as absorption capacity and water permeability, adhesion and tensile strength, hair crack-resistance, impact-resistance, repeated low and high temperature test and chemical resistance, soundness for drinking water, soundness for drinking water and etc. In this study these engineering properties of composite systems using polymer-modified mortar and epoxy resins were examined and could be confirmed to satisfy the guidelines of KS. Especially, it was turn out that the adhesion properties was excellent and high crack-resistance up to 1.49 mm will be perform.