DOI QR코드

DOI QR Code

Study on Evaluation of Degrease Performance on the Interface between Oil and Alloy

탈지 정도에 대한 방청유-금속 계면의 영향성 평가

  • Choi, Wonyoung (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Moonsu (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Yoo, Hyeonseok (Steel Solution Research Lab., POSCO) ;
  • Song, Yeongyun (Steel Solution Research Lab., POSCO) ;
  • Jeong, Yong-Gyun (Steel Solution Research Lab., POSCO) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 최원영 (인하대학교 화학공학과) ;
  • 김문수 (인하대학교 화학공학과) ;
  • 유현석 (포스코 철강솔루션연구소) ;
  • 송연균 (포스코 철강솔루션연구소) ;
  • 정용균 (포스코 철강솔루션연구소) ;
  • 최진섭 (인하대학교 화학공학과)
  • Received : 2021.12.24
  • Accepted : 2021.12.30
  • Published : 2021.12.31

Abstract

The use of anti-corrosive oil (AC) is inevitable for production of industrial steels to prevent corrosion. The AC is degreased before application of steels, which crucially effects on final products, such as automobile, electricity etc. However, qualitative/quantitative evaluation of degreasing performance are steal insufficient. In this study, degreasing performance of anti-corrosive oil on steel have been studied through X-ray photon spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Commercial automotive steels (AMS) are coated with 4 different anti-corrosive oils (namely AC1-AC4). In XPS, intensity of C1s peak remained after degreasing indirectly indicates incomplete degreasing. Thus, higher C1s peak intensity means less effective degreasing by degreasing agent. peak intensity of C1s peak shows opposite tendency of peak intensity of O1s. We found that EIS analysis is not applicable to mild steel (such as AMS1) due to corrosion during measurement. However, alloy steel can be fully analyzed by EIS and XPS depth profile.

Keywords

References

  1. J.V. G. Koch, N. Thompson, O. Moghissi, M. Gould. J. Payer, International Measures of Prevention, Application, and Economics of Corrosion Technologie Study, NACE, (2016). 1-2
  2. M. Stratmann, R. Feser, A. Leng, Corrosion protection by organic films, Electrochim. Acta, 39 (1994) 1207-1214. https://doi.org/10.1016/0013-4686(94)E0038-2
  3. O. Olivares-Xometl, N. Likhanova, M. Dominguez-Aguilar, E. Arce, H. Dorantes, P. Arellanes-Lozada, Synthesis and corrosion inhibition of α-amino acids alkylamides for mild steel in acidic environment, Mater. Chem. Phys., 110 (2008) 344-351. https://doi.org/10.1016/j.matchemphys.2008.02.010
  4. A. Khramov, N. Voevodin, V. Balbyshev, M. Donley, Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors, Thin solid films, 447 (2004) 549-557. https://doi.org/10.1016/j.tsf.2003.07.016
  5. E. Ferreira, C. Giacomelli, F. Giacomelli, A. Spinelli, Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel, Mater. Chem. Phys., 83 (2004) 129-134. https://doi.org/10.1016/j.matchemphys.2003.09.020
  6. S. Sankarapapavinasan, F. Pushpanaden, M. Ahmed, Bright zinc-nickel plating, Met. Finish., 87 (1989) 9-11.
  7. M.G. Fontana, W. Stactile, Corrosion Science and Technology, Plenum Press, London, 1 (1970) 149.
  8. M. Abdallah, H. Al-Tass, B.A. Jahdaly, A. Fouda, Inhibition properties and adsorption behavior of 5-arylazothiazole derivatives on 1018 carbon steel in 0.5 M H2SO4 solution, J. Mol. Liq., 216 (2016) 590-597. https://doi.org/10.1016/j.molliq.2016.01.077
  9. M. Abdallah, H. Altass, A.S. Al-Gorair, J.H. Al-Fahemi, B. Jahdaly, K. Soliman, Natural nutmeg oil as a green corrosion inhibitor for carbon steel in 1.0 M HCl solution: Chemical, electrochemical, and computational methods, J. Mol. Liq., 323 (2021) 115036. https://doi.org/10.1016/j.molliq.2020.115036
  10. M. Alfakeer, M. Abdallah, A. Fawzy, Corrosion inhibition effect of expired ampicillin and flucloxacillin drugs for mild steel in aqueous acidic medium, Int. J. Electrochem. Sci, 15 (2020) 3283-3297.
  11. M. Corrales-Luna, T. Le Manh, M. Romero-Romo, M. Palomar-Pardave, E.M. Arce-Estrada, 1-Ethyl 3-methylimidazolium thiocyanate ionic liquid as corrosion inhibitor of API 5L X52 steel in H2SO4 and HCl media, Corros. Sci., 153 (2019) 85-99. https://doi.org/10.1016/j.corsci.2019.03.041
  12. C.M. Fernandes, L.X. Alvarez, N.E. dos Santos, A.C.M. Barrios, E.A. Ponzio, Green synthesis of 1-benzyl-4-phenyl-1H-1, 2, 3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses, Corros. Sci., 149 (2019) 185-1 https://doi.org/10.1016/j.corsci.2019.01.019
  13. R.A. Hameed, E. Aljuhani, A. Al-Bagawi, A. Shamroukh, M. Abdallah, Study of sulfanyl pyridazine derivatives as efficient corrosion inhibitors for carbon steel in 1.0 M HCl using analytical techniques, Int. J. Corros Scale Inhib., 9 (2020) 623-643.
  14. R.S.A. Hameed, A. Al-Bagawi, H.A. Shehata, A.H. Shamroukh, M. Abdallah, Corrosion inhibition and adsorption properties of some heterocyclic derivatives on C-steel surface in HCl, J. Bio- Tribo- Corros., 6 (2020) 1-11. https://doi.org/10.1007/s40735-019-0297-6
  15. C.P. Marshall, E.J. Javaux, A.H. Knoll, M.R. Walter, Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology, Precambrian Res., 138 (2005) 208-224. https://doi.org/10.1016/j.precamres.2005.05.006
  16. K. Dhivya, Screening of phytoconstituents, UV-VIS Spectrum and FTIR analysis of Micrococca mercurialis (L.) Benth, Int. J. Herb. Med., 5 (2017) 40-44.
  17. E.I. Solomon, S.I. Gorelsky, A. Dey, Metal-thiolate bonds in bioinorganic chemistry, J. Comput. Chem., 27 (2006) 1415-1428. https://doi.org/10.1002/jcc.20451
  18. H. Yang, T.C. Caves, J.L. Whitten, D.R. Huntley, Chemisorption Studies of CH3S on Ni (111), J. Am. Chem. Soc., 116 (1994) 8200-8206. https://doi.org/10.1021/ja00097a029
  19. C. Vericat, M. Vela, G. Benitez, J.M. Gago, X. Torrelles, R. Salvarezza, Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au (111), J. Condes. Matter Phys., 18 (2006) R867. https://doi.org/10.1088/0953-8984/18/48/R01
  20. D. Karhanek, T. Bucko, J. Hafner, A density functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: I. Molecular and dissociative adsorption, J. Condes. Matter Phys , 22 (2010) 265005. https://doi.org/10.1088/0953-8984/22/26/265005
  21. Y. Valadbeigi, J.-F. Gal, On the Significance of Lone Pair/Lone Pair and Lone Pair/Bond Pair Repulsions in the Cation Affinity and Lewis Acid/Lewis Base Interactions, ACS omega, 3 (2018) 11331-11339. https://doi.org/10.1021/acsomega.8b01644
  22. J.-Q. Yang, L. Jin, Y.-H. Xiao, H.-H. Yu, F.-Z. Yang, D.-P. Zhan, D.-Y. Wu, Z.-Q. Tian, Suppressing Sulfite Dimerization at a Polarized Gold Electrode/Water Solution Interface for High-Quality Gold Electrodeposition, Langmuir, 37 (2021) 11251-11259. https://doi.org/10.1021/acs.langmuir.1c01595
  23. L.B. Oliveira, W.B. Cardoso, G. Colherinhas, Hydroxylic, sulfur-containing and amidic amino acids in water solution: Atomic charges parameters for computational modeling using molecular dynamics simulation and DFT calculations, J. Mol. Liq., 339 (2021) 116815. https://doi.org/10.1016/j.molliq.2021.116815
  24. A. Shahriari, M. Ghaffari, L. Khaksar, A. Nasiri, A. Hadadzadeh, B.S. Amirkhiz, M. Mohammadi, Corrosion resistance of 13wt.% Cr martensitic stainless steels: Additively manufactured CX versus wrought Ni-containing AISI 420, Corros. Sci., 184 (2021) 109362. https://doi.org/10.1016/j.corsci.2021.109362
  25. S. Detriche, S. Vivegnis, J.-F. Vanhumbeeck, A. Felten, P. Louette, F. Renner, J. Delhalle, Z. Mekhalif, XPS fast depth profile of the native oxide layers on AISI 304, 316 and 430 commercial stainless steels and their evolution with time, J. Electron Spectrosc. Relat. Phenom., 243 (2020) 146970. https://doi.org/10.1016/j.elspec.2020.146970
  26. H. Deng, Y. Liu, Z. He, X. Gou, Y. Sheng, L. Chen, J. Ren, Electrochemical corrosion resistance of thermal oxide formed on anodized stainless steel, Anti-Corros. Method Matter., (2021).
  27. J. Tian, T.A. Trinh, M.N. Kalyan, J.S. Ho, J.W. Chew, In-situ monitoring of oil emulsion fouling in ultrafiltration via electrical impedance spectroscopy (EIS): Influence of surfactant, J. Membr. Sci., 616 (2020) 118527. https://doi.org/10.1016/j.memsci.2020.118527
  28. A.M. El Defrawy, M. Abdallah, J.H. Al-Fahemi, Electrochemical and theoretical investigation for some pyrazolone derivatives as inhibitors for the corrosion of C-steel in 0.5 M hydrochloric acid, J. Mol. Liq., 288 (2019) 110994. https://doi.org/10.1016/j.molliq.2019.110994