Browse > Article
http://dx.doi.org/10.5695/JKISE.2021.54.6.371

Study on Evaluation of Degrease Performance on the Interface between Oil and Alloy  

Choi, Wonyoung (Department of Chemistry and Chemical Engineering, Inha University)
Kim, Moonsu (Department of Chemistry and Chemical Engineering, Inha University)
Yoo, Hyeonseok (Steel Solution Research Lab., POSCO)
Song, Yeongyun (Steel Solution Research Lab., POSCO)
Jeong, Yong-Gyun (Steel Solution Research Lab., POSCO)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of the Korean institute of surface engineering / v.54, no.6, 2021 , pp. 371-379 More about this Journal
Abstract
The use of anti-corrosive oil (AC) is inevitable for production of industrial steels to prevent corrosion. The AC is degreased before application of steels, which crucially effects on final products, such as automobile, electricity etc. However, qualitative/quantitative evaluation of degreasing performance are steal insufficient. In this study, degreasing performance of anti-corrosive oil on steel have been studied through X-ray photon spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Commercial automotive steels (AMS) are coated with 4 different anti-corrosive oils (namely AC1-AC4). In XPS, intensity of C1s peak remained after degreasing indirectly indicates incomplete degreasing. Thus, higher C1s peak intensity means less effective degreasing by degreasing agent. peak intensity of C1s peak shows opposite tendency of peak intensity of O1s. We found that EIS analysis is not applicable to mild steel (such as AMS1) due to corrosion during measurement. However, alloy steel can be fully analyzed by EIS and XPS depth profile.
Keywords
Steel; Oil; Anticorrosive oil; Degrease; Electrochemical impedance spectroscopy; EIS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Shahriari, M. Ghaffari, L. Khaksar, A. Nasiri, A. Hadadzadeh, B.S. Amirkhiz, M. Mohammadi, Corrosion resistance of 13wt.% Cr martensitic stainless steels: Additively manufactured CX versus wrought Ni-containing AISI 420, Corros. Sci., 184 (2021) 109362.   DOI
2 S. Detriche, S. Vivegnis, J.-F. Vanhumbeeck, A. Felten, P. Louette, F. Renner, J. Delhalle, Z. Mekhalif, XPS fast depth profile of the native oxide layers on AISI 304, 316 and 430 commercial stainless steels and their evolution with time, J. Electron Spectrosc. Relat. Phenom., 243 (2020) 146970.   DOI
3 J. Tian, T.A. Trinh, M.N. Kalyan, J.S. Ho, J.W. Chew, In-situ monitoring of oil emulsion fouling in ultrafiltration via electrical impedance spectroscopy (EIS): Influence of surfactant, J. Membr. Sci., 616 (2020) 118527.   DOI
4 A.M. El Defrawy, M. Abdallah, J.H. Al-Fahemi, Electrochemical and theoretical investigation for some pyrazolone derivatives as inhibitors for the corrosion of C-steel in 0.5 M hydrochloric acid, J. Mol. Liq., 288 (2019) 110994.   DOI
5 J.V. G. Koch, N. Thompson, O. Moghissi, M. Gould. J. Payer, International Measures of Prevention, Application, and Economics of Corrosion Technologie Study, NACE, (2016). 1-2
6 O. Olivares-Xometl, N. Likhanova, M. Dominguez-Aguilar, E. Arce, H. Dorantes, P. Arellanes-Lozada, Synthesis and corrosion inhibition of α-amino acids alkylamides for mild steel in acidic environment, Mater. Chem. Phys., 110 (2008) 344-351.   DOI
7 C.M. Fernandes, L.X. Alvarez, N.E. dos Santos, A.C.M. Barrios, E.A. Ponzio, Green synthesis of 1-benzyl-4-phenyl-1H-1, 2, 3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses, Corros. Sci., 149 (2019) 185-1   DOI
8 D. Karhanek, T. Bucko, J. Hafner, A density functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: I. Molecular and dissociative adsorption, J. Condes. Matter Phys , 22 (2010) 265005.   DOI
9 M. Stratmann, R. Feser, A. Leng, Corrosion protection by organic films, Electrochim. Acta, 39 (1994) 1207-1214.   DOI
10 E. Ferreira, C. Giacomelli, F. Giacomelli, A. Spinelli, Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel, Mater. Chem. Phys., 83 (2004) 129-134.   DOI
11 A. Khramov, N. Voevodin, V. Balbyshev, M. Donley, Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors, Thin solid films, 447 (2004) 549-557.   DOI
12 S. Sankarapapavinasan, F. Pushpanaden, M. Ahmed, Bright zinc-nickel plating, Met. Finish., 87 (1989) 9-11.
13 M.G. Fontana, W. Stactile, Corrosion Science and Technology, Plenum Press, London, 1 (1970) 149.
14 E.I. Solomon, S.I. Gorelsky, A. Dey, Metal-thiolate bonds in bioinorganic chemistry, J. Comput. Chem., 27 (2006) 1415-1428.   DOI
15 M. Abdallah, H. Al-Tass, B.A. Jahdaly, A. Fouda, Inhibition properties and adsorption behavior of 5-arylazothiazole derivatives on 1018 carbon steel in 0.5 M H2SO4 solution, J. Mol. Liq., 216 (2016) 590-597.   DOI
16 M. Corrales-Luna, T. Le Manh, M. Romero-Romo, M. Palomar-Pardave, E.M. Arce-Estrada, 1-Ethyl 3-methylimidazolium thiocyanate ionic liquid as corrosion inhibitor of API 5L X52 steel in H2SO4 and HCl media, Corros. Sci., 153 (2019) 85-99.   DOI
17 R.S.A. Hameed, A. Al-Bagawi, H.A. Shehata, A.H. Shamroukh, M. Abdallah, Corrosion inhibition and adsorption properties of some heterocyclic derivatives on C-steel surface in HCl, J. Bio- Tribo- Corros., 6 (2020) 1-11.   DOI
18 R.A. Hameed, E. Aljuhani, A. Al-Bagawi, A. Shamroukh, M. Abdallah, Study of sulfanyl pyridazine derivatives as efficient corrosion inhibitors for carbon steel in 1.0 M HCl using analytical techniques, Int. J. Corros Scale Inhib., 9 (2020) 623-643.
19 L.B. Oliveira, W.B. Cardoso, G. Colherinhas, Hydroxylic, sulfur-containing and amidic amino acids in water solution: Atomic charges parameters for computational modeling using molecular dynamics simulation and DFT calculations, J. Mol. Liq., 339 (2021) 116815.   DOI
20 M. Alfakeer, M. Abdallah, A. Fawzy, Corrosion inhibition effect of expired ampicillin and flucloxacillin drugs for mild steel in aqueous acidic medium, Int. J. Electrochem. Sci, 15 (2020) 3283-3297.
21 C.P. Marshall, E.J. Javaux, A.H. Knoll, M.R. Walter, Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology, Precambrian Res., 138 (2005) 208-224.   DOI
22 K. Dhivya, Screening of phytoconstituents, UV-VIS Spectrum and FTIR analysis of Micrococca mercurialis (L.) Benth, Int. J. Herb. Med., 5 (2017) 40-44.
23 H. Yang, T.C. Caves, J.L. Whitten, D.R. Huntley, Chemisorption Studies of CH3S on Ni (111), J. Am. Chem. Soc., 116 (1994) 8200-8206.   DOI
24 M. Abdallah, H. Altass, A.S. Al-Gorair, J.H. Al-Fahemi, B. Jahdaly, K. Soliman, Natural nutmeg oil as a green corrosion inhibitor for carbon steel in 1.0 M HCl solution: Chemical, electrochemical, and computational methods, J. Mol. Liq., 323 (2021) 115036.   DOI
25 J.-Q. Yang, L. Jin, Y.-H. Xiao, H.-H. Yu, F.-Z. Yang, D.-P. Zhan, D.-Y. Wu, Z.-Q. Tian, Suppressing Sulfite Dimerization at a Polarized Gold Electrode/Water Solution Interface for High-Quality Gold Electrodeposition, Langmuir, 37 (2021) 11251-11259.   DOI
26 C. Vericat, M. Vela, G. Benitez, J.M. Gago, X. Torrelles, R. Salvarezza, Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au (111), J. Condes. Matter Phys., 18 (2006) R867.   DOI
27 H. Deng, Y. Liu, Z. He, X. Gou, Y. Sheng, L. Chen, J. Ren, Electrochemical corrosion resistance of thermal oxide formed on anodized stainless steel, Anti-Corros. Method Matter., (2021).
28 Y. Valadbeigi, J.-F. Gal, On the Significance of Lone Pair/Lone Pair and Lone Pair/Bond Pair Repulsions in the Cation Affinity and Lewis Acid/Lewis Base Interactions, ACS omega, 3 (2018) 11331-11339.   DOI