Browse > Article
http://dx.doi.org/10.5695/JKISE.2019.52.1.37

Wettability of Lubricant-Impregnated Electroplated Zinc Surface with Nanostructure  

Jung, Haechang (Department of Metallurgical Engineering, Pukyong National University)
Kim, Wang Ryeol (Korea Institute of Industrial Technology (KITECH))
Jeong, Chanyoung (Department of Advanced Materials Engineering, Dong-Eui University)
Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University)
Publication Information
Journal of the Korean institute of surface engineering / v.52, no.1, 2019 , pp. 37-42 More about this Journal
Abstract
Electrodeposited zinc layer is widely used as a sacrificial anode for a corrosion protection of steel. In this study, we modified the surface of electrodeposited zinc to have a hydrophobicity, which shows various advanced functionalities, such as anti-corrosion, anti-biofouling, anti-icing and self-cleaning, due to its repellency to liquids. Superhydrophobicity was realized on electrodeposited zinc layer with a hydrothermal treatment, creating nanostructures on the surface, and following Teflon coating. The superhydrophobic surface shows a great repellency to water with high surface tension, while liquid droplets with low surface tension easily adhered on the superhydrophobic surface. However, immiscible lubricant-impregnated superhydrophobic surface shows a great repellency to various liquids, regardless of their surface tension. Therefore, it is expected that the lubricant-impregnated surface can be an alternative of superhydrophobic surface, which have a drawback for some liquids with a low surface tension.
Keywords
Zinc Electrodeposition; Nanostructure; Lubricant; Hydrophobicity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 X. Feng, L. Jiang, Advanced Materials, 18 (2006) 3063-3078.   DOI
2 W. Barthlott, C. Neinhuis, Planta, 202 (1997) 1-8.   DOI
3 M. Cao, D. Guo, C. Yu, K. Li, M. Liu, L. Jiang, ACS applied materials & interfaces, 8 (2015) 3615-3623.   DOI
4 이정훈, 한국표면공학회지, 51 (2018) 11-20.   DOI
5 P. Roach, N. J. Shirtcliffe, M. I. Newton, Soft matter, 4 (2008) 224-240.   DOI
6 J. Ou, B. Perot, J. P. Rothstein, Physics of fluids, 16 (2004) 4635-4643.   DOI
7 C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, C.-J. Kim, Physics of fluids, 18 (2006) 087105.   DOI
8 C.-H. Choi, C.-J. Kim, Physical review letters, 96 (2006) 066001.   DOI
9 F. Hizal, N. Rungraeng, J. Lee, S. Jun, H. J. Busscher, H. C. Van der Mei, C.-H. Choi, ACS Applied Materials & Interfaces, 9 (2017) 12118-12129.   DOI
10 G. Bruinsma, H. Van der Mei, H. Busscher, Biomaterials, 22 (2001) 3217-3224.   DOI
11 C. Jeong, J. Lee, K. Sheppard, C.-H. Choi, Langmuir, 31 (2015) 11040-11050.   DOI
12 L. Boinovich, S. Gnedenkov, D. Alpysbaeva, V. Egorkin, A. Emelyanenko, S. Sinebryukhov, A. Zaretskaya, Corrosion Science, 55 (2012) 238-245.   DOI
13 L. J. Chen, M. Chen, H. D. Zhou, J. M. Chen, Applied Surface Science, 255 (2008) 3459-3462.   DOI
14 N. Desbiens, I. Demachy, A. H. Fuchs, H. Kirsch?Rodeschini, M. Soulard, J. Patarin, Angewandte Chemie International Edition, 44 (2005) 5310-5313.   DOI
15 S. Farhadi, M. Farzaneh, S. Kulinich, Applied Surface Science, 257 (2011) 6264-6269.   DOI
16 M. A. Sarshar, C. Swarctz, S. Hunter, J. Simpson, C.-H. Choi, Colloid and Polymer Science, 291 (2013) 427-435.   DOI
17 O. Parent, A. Ilinca, Cold regions science and technology, 65 (2011) 88-96.   DOI
18 L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang, D. Zhu, Angewandte Chemie International Edition, 43 (2004) 2012-2014.   DOI
19 W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, L. Jiang, Advanced Materials, 25 (2013) 2071-2076.   DOI
20 R. Narhe, D. Beysens, EPL (Europhysics Letters), 75 (2006) 98.   DOI
21 B. V. Zhmud, F. Tiberg, K. Hallstensson, Journal of Colloid and Interface Science, 228 (2000) 263-269.   DOI
22 T.-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg, Nature, 477 (2011) 443-447.   DOI
23 A. K. Epstein, T.-S. Wong, R. A. Belisle, E. M. Boggs, J. Aizenberg, Proceedings of the National Academy of Sciences, 109 (2012) 13182-13187.   DOI
24 S. Anand, A. T. Paxson, R. Dhiman, J. D. Smith, K. K. Varanasi, ACS Nano, 6 (2012) 10122-10129.   DOI
25 K. Rykaczewski, T. Landin, M. L. Walker, J. H. J. Scott, K. K. Varanasi, ACS Nano, 6 (2012) 9326-9334.   DOI
26 T. Yoshida, M. Tochimoto, D. Schlettwein, D. Wohrle, T. Sugiura, H. Minoura, Chemistry of Materials, 11 (1999) 2657-2667.   DOI
27 R. N. Wenzel, Industrial & Engineering Chemistry, 28 (1936) 988-994.   DOI
28 C. Semprebon, G. McHale, H. Kusumaatmaja, Soft matter, 13 (2017) 101-110.   DOI
29 J. D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R. E. Cohen, G. H. McKinley, K. K. Varanasi, Soft Matter, 9 (2013) 1772-1780.   DOI
30 F. Schellenberger, J. Xie, N. Encinas, A. Hardy, M. Klapper, P. Papadopoulos, H.-J. Butt, D. Vollmer, Soft Matter, 11 (2015) 7617-7626.   DOI
31 S. Sunny, N. Vogel, C. Howell, T. L. Vu, J. Aizenberg, Advanced Functional Materials, 24 (2014) 6658-6667.   DOI
32 A. B. D. Cassie, S. Baxter, Transactions of the Faraday Society, 40 (1944) 546-551.   DOI