Browse > Article
http://dx.doi.org/10.14773/cst.2018.17.4.154

Effects of Sulfuric Acid Concentration and Alloying Elements on the Corrosion Resistance of Cu-bearing low Alloy Steels  

Kim, Ki Tae (Materials Research Center for Clean and Energy Technology, School of Materials Science and Engineering, Andong National University)
Kim, Young Sik (Materials Research Center for Clean and Energy Technology, School of Materials Science and Engineering, Andong National University)
Publication Information
Corrosion Science and Technology / v.17, no.4, 2018 , pp. 154-165 More about this Journal
Abstract
During the process of sulfur dioxide removal, flue gas desulfurization equipment provides a serious internal corrosion environment in creating sulfuric acid dew point corrosion. Therefore, the utilities must use the excellent corrosion resistance of steel desulfurization facilities in the atmosphere. Until now, the trend in developing anti-sulfuric acid steels was essentially the addition of Cu, in order to improve the corrosion resistance. The experimental alloy used in this study is Fe-0.03C-1.0Mn-0.3Si-0.15Ni-0.31Cu alloys to which Ru, Zn and Ta were added. In order to investigate the effect of $H_2SO_4$ concentration and the alloying elements, chemical and electrochemical corrosion tests were performed. In a low concentration of $H_2SO_4$ solution, the major factor affecting the corrosion rate of low alloy steels was the exchange current density for $H^+/H_2$ reaction, while in a high concentration of $H_2SO_4$ solution, the major factors were the thin and dense passive film and resulting passivation behavior. The alloying elements reducing the exchange current density in low concentration of $H_2SO_4$, and the alloying elements decreasing the passive current density in high concentration of $H_2SO_4$, together play an important role in determining the corrosion rate of Cu-bearing low alloy steels in a wide range of $H_2SO_4$ solution.
Keywords
Cu-bearing low alloy steel; Sulfuric acid; Exchange current density; Passivation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Sharma, D. S. N. Prasad, S. Acharya, and R. Sharma, Int. J. Chem. Eng. Appl., 3, 129 (2012).
2 J. T. Lee and M. C. Chen, Using Seawater to Remove $SO_2$ in a FGD System, open access, p. 427, Waste Water - Treatment and Reutilization, InTech, London (2011).
3 J. E. Staudt, S. R. Khan, and M. J. Oliva, Proc. Combined Power Plant Air Pollutant Control Mega Symposium 2004, Paper # 04-A-56-AWMA, Washington (2004).
4 D. Kelley, J. Reinf. Plast. Comp., 51, 14, (2007).
5 S. A. Park and J. G. Kim, Kor. J. Met. Mater., 52, 837 (2014).   DOI
6 M. Seo, G. Hultquist, C. Leygraf, and N. Sato, Corros. Sci., 26, 949 (1986).   DOI
7 A. Yamamoto, T. Ashiura, and E. Kamisaka, Corros. Eng., 35, 48, (1986).
8 J. Okamoto, A. Usami, and H. Mimura, Nippon Steel Technical Report, 87, 46 (2003).
9 J. Y. Park, K. J. Chung, and S. H. Lee, POSCO Research paper, 12, 23 (2007).
10 S. H. Kim, S. A. Park, J. G. Kim, K. S. Shin, and Y. He, Met. Mater. Int., 21, 232 (2015).   DOI
11 A. Pardo, M. C. Merino, Corros. Sci., 48, 1075 (2006).   DOI
12 K. N. Oh, and S. H Ahn, Electrochim. Acta, 88, 170 (2013).   DOI
13 J. H. Hong, S. H. Lee, and J. G. Kim, Corros. Sci., 54, 174 (2012).   DOI
14 J. S. Lee, S. T. Kim, and I. S. Lee, Mater. Trans., 53, 1048 (2012).   DOI
15 S. T. Kim, Y. S. Park, H. J. Kim, Corros. Sci. Tech., 28, 281 (1999).
16 H. E. Townsend, Corrosion, 57, 497 (2001).   DOI
17 H. E. Townsend, T. C. Simpson, and G. L. Jhonson, Corrosion, 50, 546 (1994).   DOI
18 M. J. Kim and J. G. Kim, Int. J. Electrochem. Sci., 10, 6872 (2015).
19 K. H. Kim, S. H. Lee, N. D. Nam, and J. G. Kim, Corros. Sci., 53, 3576 (2011).   DOI
20 S. A. Park, J. G. Kim, and J. B. Yoon, Corrosion, 70, 196 (2014).   DOI
21 D. Devilliers, M. T. Dinh, E. Mahe, D. Krulic, N. Larabi and N. Fatouros, J. New. Mat, Electrochem. systems, 2, 221 (2006).
22 N. D. Nam and J. G. Kim, Corros. Sci., 52, 3337 (2010).
23 L. L. Wikstrom, N. T. Thomas, and K. Nobe, J. Electrochem. Soc., 122, 1201 (1975).   DOI
24 M. Metikos-Hukovic and B. Lovrecek, Electrochim. Acta, 25, 717 (1979).
25 IARC, Antimony trioxide and antimony trisulfide, IARCMonog. Eval. Carc, 47, 291 (1989).
26 NARS, Main Issues regarding the Introduction of the Good Samaritan Law, 90, 67, (2010).
27 S. Uttiya, D. Contarino, S. Prandi, M. Carnasciali, G. Gemme, L. Mattera, R. Rolandi, M. Canepa, and O. Cavalleri, J. Mater. Sci. Nanotechnol., 1, 1 (2014).
28 A. S. Mogoda, W. A. Badawy and M. M. Ibrahim, Indian J. Chem. Techn., 2, 217 (1995).
29 D. L. Graver, Corrosion data survey-Metals section, 6th ed., p. 69, NACE, Texas (1985).
30 J. H. Potgieter, W. Skinner, and A. M. Heyns, INCSAC, 2, 235 (1992).
31 P. P. Sharma and I. I. Suni, J. Electrochem. Soc., 158, H111 (2011).   DOI
32 E. B. Ituen, Advan. Appl. Sci. Res., 5, 26 (2014).
33 S. A. Odoemelam, E. C. Ogoko, B. I. Ita, N. O. Eddy, Port. Electrochim. Acta, 27, 57 (2009).   DOI