DOI QR코드

DOI QR Code

Wettability of Lubricant-Impregnated Electroplated Zinc Surface with Nanostructure

윤활유가 침지된 나노구조 전기아연도금층의 젖음성

  • Jung, Haechang (Department of Metallurgical Engineering, Pukyong National University) ;
  • Kim, Wang Ryeol (Korea Institute of Industrial Technology (KITECH)) ;
  • Jeong, Chanyoung (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University)
  • 정해창 (부경대학교 금속공학과) ;
  • 김왕렬 (한국생산기술연구원) ;
  • 정찬영 (동의대학교 신소재공학과) ;
  • 이정훈 (부경대학교 금속공학과)
  • Received : 2019.01.22
  • Accepted : 2019.02.25
  • Published : 2019.02.28

Abstract

Electrodeposited zinc layer is widely used as a sacrificial anode for a corrosion protection of steel. In this study, we modified the surface of electrodeposited zinc to have a hydrophobicity, which shows various advanced functionalities, such as anti-corrosion, anti-biofouling, anti-icing and self-cleaning, due to its repellency to liquids. Superhydrophobicity was realized on electrodeposited zinc layer with a hydrothermal treatment, creating nanostructures on the surface, and following Teflon coating. The superhydrophobic surface shows a great repellency to water with high surface tension, while liquid droplets with low surface tension easily adhered on the superhydrophobic surface. However, immiscible lubricant-impregnated superhydrophobic surface shows a great repellency to various liquids, regardless of their surface tension. Therefore, it is expected that the lubricant-impregnated surface can be an alternative of superhydrophobic surface, which have a drawback for some liquids with a low surface tension.

Keywords

PMGHBJ_2019_v52n1_37_f0001.png 이미지

Fig. 1. SEM Images of (a) electrodeposited zinc surface and (b) electrodeposited zinc surface with a hydrothermal (boiling) treatment at (i) low and (ii) high magnifications.

PMGHBJ_2019_v52n1_37_f0002.png 이미지

Fig. 2. Images of (a) water, (b) ethylene glycol and (c) hexadecane droplets on (i) electrodeposited zinc (Zn), (ii) with Teflon coating (Zn-T), (iii) with hydrothermal treatment and Teflon coating (Zn-H-T) and with hydrothermal treatment, Teflon coating and oil-impregnation (Zn-H-T-O). (d) Summarized static contact angles as a function of surface tension of liquids. White scale bars in (a)-(c) indicate 1 mm.

PMGHBJ_2019_v52n1_37_f0003.png 이미지

Fig. 3. Schematic cross-sectional images of liquid droplets on surfaces.

PMGHBJ_2019_v52n1_37_f0004.png 이미지

Fig. 4. Images of (a) water, (b) ethylene glycol and (c) hexadecane droplets on (i) electrodeposited zinc (Zn), (ii) with Teflon coating (Zn-T), (iii) with hydrothermal treatment and Teflon coating (Zn-H-T) and with hydrothermal treatment, Teflon coating and oil-impregnation (Zn-H-T-O). Left and right images indicate the liquid droplet during the measurements of advancing and receding contact angle, respectively. (d) Summarized receding contact angles and (e) contact angle hysteresis as a function of surface tension of liquids. White scale bars in (a)-(c) indicate 1 mm.

PMGHBJ_2019_v52n1_37_f0005.png 이미지

Fig. 5. Images of water, ethylene glycol and hexadecane droplets on tilted electrodeposited zinc (Zn), zinc with Teflon coating (Zn-T), zinc with hydrothermal treatment and Teflon coating (Zn-H-T) and zinc with hydrothermal treatment, Teflon coating and oil-impregnation (Zn-H-T-O). Black scale bars indicate 1 mm.

References

  1. X. Feng, L. Jiang, Advanced Materials, 18 (2006) 3063-3078. https://doi.org/10.1002/adma.200501961
  2. W. Barthlott, C. Neinhuis, Planta, 202 (1997) 1-8. https://doi.org/10.1007/s004250050096
  3. M. Cao, D. Guo, C. Yu, K. Li, M. Liu, L. Jiang, ACS applied materials & interfaces, 8 (2015) 3615-3623. https://doi.org/10.1021/acsami.5b07881
  4. 이정훈, 한국표면공학회지, 51 (2018) 11-20. https://doi.org/10.5695/JKISE.2018.51.1.11
  5. P. Roach, N. J. Shirtcliffe, M. I. Newton, Soft matter, 4 (2008) 224-240. https://doi.org/10.1039/B712575P
  6. J. Ou, B. Perot, J. P. Rothstein, Physics of fluids, 16 (2004) 4635-4643. https://doi.org/10.1063/1.1812011
  7. C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, C.-J. Kim, Physics of fluids, 18 (2006) 087105. https://doi.org/10.1063/1.2337669
  8. C.-H. Choi, C.-J. Kim, Physical review letters, 96 (2006) 066001. https://doi.org/10.1103/PhysRevLett.96.066001
  9. F. Hizal, N. Rungraeng, J. Lee, S. Jun, H. J. Busscher, H. C. Van der Mei, C.-H. Choi, ACS Applied Materials & Interfaces, 9 (2017) 12118-12129. https://doi.org/10.1021/acsami.7b01322
  10. G. Bruinsma, H. Van der Mei, H. Busscher, Biomaterials, 22 (2001) 3217-3224. https://doi.org/10.1016/S0142-9612(01)00159-4
  11. C. Jeong, J. Lee, K. Sheppard, C.-H. Choi, Langmuir, 31 (2015) 11040-11050. https://doi.org/10.1021/acs.langmuir.5b02392
  12. L. Boinovich, S. Gnedenkov, D. Alpysbaeva, V. Egorkin, A. Emelyanenko, S. Sinebryukhov, A. Zaretskaya, Corrosion Science, 55 (2012) 238-245. https://doi.org/10.1016/j.corsci.2011.10.023
  13. L. J. Chen, M. Chen, H. D. Zhou, J. M. Chen, Applied Surface Science, 255 (2008) 3459-3462. https://doi.org/10.1016/j.apsusc.2008.07.122
  14. S. Farhadi, M. Farzaneh, S. Kulinich, Applied Surface Science, 257 (2011) 6264-6269. https://doi.org/10.1016/j.apsusc.2011.02.057
  15. M. A. Sarshar, C. Swarctz, S. Hunter, J. Simpson, C.-H. Choi, Colloid and Polymer Science, 291 (2013) 427-435. https://doi.org/10.1007/s00396-012-2753-4
  16. O. Parent, A. Ilinca, Cold regions science and technology, 65 (2011) 88-96. https://doi.org/10.1016/j.coldregions.2010.01.005
  17. L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang, D. Zhu, Angewandte Chemie International Edition, 43 (2004) 2012-2014. https://doi.org/10.1002/anie.200353381
  18. W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, L. Jiang, Advanced Materials, 25 (2013) 2071-2076. https://doi.org/10.1002/adma.201204520
  19. N. Desbiens, I. Demachy, A. H. Fuchs, H. Kirsch?Rodeschini, M. Soulard, J. Patarin, Angewandte Chemie International Edition, 44 (2005) 5310-5313. https://doi.org/10.1002/anie.200501250
  20. R. Narhe, D. Beysens, EPL (Europhysics Letters), 75 (2006) 98. https://doi.org/10.1209/epl/i2006-10069-9
  21. B. V. Zhmud, F. Tiberg, K. Hallstensson, Journal of Colloid and Interface Science, 228 (2000) 263-269. https://doi.org/10.1006/jcis.2000.6951
  22. T.-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg, Nature, 477 (2011) 443-447. https://doi.org/10.1038/nature10447
  23. A. K. Epstein, T.-S. Wong, R. A. Belisle, E. M. Boggs, J. Aizenberg, Proceedings of the National Academy of Sciences, 109 (2012) 13182-13187. https://doi.org/10.1073/pnas.1201973109
  24. S. Anand, A. T. Paxson, R. Dhiman, J. D. Smith, K. K. Varanasi, ACS Nano, 6 (2012) 10122-10129. https://doi.org/10.1021/nn303867y
  25. K. Rykaczewski, T. Landin, M. L. Walker, J. H. J. Scott, K. K. Varanasi, ACS Nano, 6 (2012) 9326-9334. https://doi.org/10.1021/nn304250e
  26. T. Yoshida, M. Tochimoto, D. Schlettwein, D. Wohrle, T. Sugiura, H. Minoura, Chemistry of Materials, 11 (1999) 2657-2667. https://doi.org/10.1021/cm980619o
  27. R. N. Wenzel, Industrial & Engineering Chemistry, 28 (1936) 988-994. https://doi.org/10.1021/ie50320a024
  28. A. B. D. Cassie, S. Baxter, Transactions of the Faraday Society, 40 (1944) 546-551. https://doi.org/10.1039/tf9444000546
  29. J. D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R. E. Cohen, G. H. McKinley, K. K. Varanasi, Soft Matter, 9 (2013) 1772-1780. https://doi.org/10.1039/C2SM27032C
  30. F. Schellenberger, J. Xie, N. Encinas, A. Hardy, M. Klapper, P. Papadopoulos, H.-J. Butt, D. Vollmer, Soft Matter, 11 (2015) 7617-7626. https://doi.org/10.1039/C5SM01809A
  31. C. Semprebon, G. McHale, H. Kusumaatmaja, Soft matter, 13 (2017) 101-110. https://doi.org/10.1039/C6SM00920D
  32. S. Sunny, N. Vogel, C. Howell, T. L. Vu, J. Aizenberg, Advanced Functional Materials, 24 (2014) 6658-6667. https://doi.org/10.1002/adfm.201401289