• Title/Summary/Keyword: annealing temperatures

Search Result 733, Processing Time 0.027 seconds

X-ray Scattering Study of Reactive Sputtered Ta-N/Ta/Si(001)Film as a Barrier Metal for Cu Interconnection (구리배선용 베리어메탈로 쓰이는 Ta-N/Ta/Si(001)박막에 관한 X-선 산란연구)

  • Kim, Sang-Soo;Kang, Hyon-Chol;Noh, Do-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.79-83
    • /
    • 2001
  • In order to compare the barrier properties of Ta-N/Si(001) with those of Ta-N/Ta/Si(001), we studied structural properties of films grown by RF magnetron sputtering with various $Ar/N_2$ ratios. To evaluate the barrier properties, the samples were annealed in a vacuum chamber. Ex-situ x-ray scattering measurements were done using an in-house x-ray system. With increasing nitrogen ratio in Ta-N/Si(001), the barrier property of Ta-N/Si(001) was enhanced, finally failed at $750^{\circ}C$ due to the crystallization and silicide formation. Compared with Ta-N/Si(001), Ta-N/Ta/Si(001) forms silicides at $650^{\circ}C$. However it does not crystallize even at $750^{\circ}C$. With increasing nitrogen composition in Ta-N/Ta/Si(001), the formation of tantalum silicide was reduced and the surface roughness was improved. To observe the surface morphology of Ta-N/Ta/Si(001) during annealing, we performed an in-situ x-ray scattering experiment using synchrotron radiation of the 5C2 at Pohang Light Source(PLS). Addition of Ta layer between Ta-N and Si(001) improved the surface morphology and reduced the surface degradation at high temperatures. In addition, increasing $N_2/Ar$ flow ratio reduced the formation of tantalum silicide and enhanced the barrier properties.

  • PDF

The Effect of Thernal Annealing and Growth of $CdIn_2S_4$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의해 성장된 $CdIn_2S_4$ 단결정 박막 성장의 광학적 특성)

  • Yun, Seok-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.129-130
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by hot wall epitaxy(HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. After the as-grown $CdIn_2S_4$ single crystal thin films was annealed in Cd-, S-, and In-atmospheres, the origin of point defects of $CdIn_2S_4$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{cd}$, $V_s$, $Cd_{int}$, and $S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment m the S-atmosphere converted $CdIn_2S_4$ single crystal thin films to an optical p-type. Also. we confirmed that In in $CdIn_2S_4$/GaAs did not form the native defects because In in $CdIn_2S_4$ single crystal thin films existed in the form of stable bonds.

  • PDF

Direct Bonding of Si || SiO2/Si3N4 || Si Wafer Pairs With a Furnace (전기로를 이용한 Si || SiO2/Si3N4 || Si 이종기판쌍의 직접접합)

  • Lee, Sang-Hyeon;Lee, Sang-Don;Seo, Tae-Yun;Song, O-Seong
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.117-120
    • /
    • 2002
  • We investigated the possibility of direct bonding of the Si ∥SiO$_2$/Si$_3$N$_4$∥Si wafers for Oxide-Nitride-Oxide(ONO) gate oxide applications. 10cm-diameter 2000$\AA$-thick thermal oxide/Si(100) and 500$\AA$-Si$_3$N$_4$LPCVD/Si (100) wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were premated wish facing the mirror planes by a specially designed aligner in class-100 clean room immediately. Premated wafer pairs were annealed by an electric furnace at the temperatures of 400, 600, 800, 1000, and 120$0^{\circ}C$ for 2hours, respectively. Direct bonded wafer pairs were characterized the bond area with a infrared(IR) analyzer, and measured the bonding interface energy by a razor blade crack opening method. We confirmed that the bond interface energy became 2,344mJ/$\m^2$ when annealing temperature reached 100$0^{\circ}C$, which were comparable with the interface energy of homeogenous wafer pairs of Si/Si.

HRTEM Study of Precipitation Behavior in Mg-6 wt%Zn-1 wt%Y Alloy (고분해능 전자현미경을 이용한 Mg-6 wt%Zn-1 wt%Y 합금의 석출거동에 관한 연구)

  • Baek, Sang-Yeol;Lee, Kap-Ho;Kim, Taek-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.362-366
    • /
    • 2008
  • The precipitation behavior in Mg-6 wt%Zn-1 wt%Y alloy annealed at different temperatures of $200^{\circ}C$ and $400^{\circ}C$ has been characterized by high resolution transmission electron microscope. When the alloy is annealed at $200^{\circ}C$ for 6 hr, the plate- and the rod-shaped ${\beta}_2'$ phases are precipitated in the matrix. The orientation relationship of plate-shaped precipitates with the matrix exhibits a [$11{\bar{2}}0]{\beta}_2$ || [$10{\bar{1}}0$]Mg, $(0001){\beta}_2'$ || (0001)Mg. While the rod-shaped precipitates have two kinds of the orientation relationships with the matrix, i.e. $[11{\bar{2}}0]{\beta}_2'$||[0001] Mg, $(0001){\beta}_2'||(11{\bar{2}}0)$ Mg and $[11{\bar{2}}0]{\beta}_2'$||[0001] Mg, $({\bar{1}}106){\beta}_2'||(10{\bar{1}}0)$ Mg. With increasing annealing time at $200^{\circ}C$ the ${\beta}_1'$ phases are also precipitated in the matrix and the orientation relationship exhibits a $[010]{\beta}_1'$ || [0001]Mg, $(603){\beta}_1'$ || ($01{\bar{1}}0$)Mg between the ${\beta}_1'$ precipitate and the matrix. The icosahedral phases are precipitated in the alloy annealed at $400^{\circ}C$ and exhibit a $[I2]_I$ || [0001]Mg relationship with the matrix.

Fabrication and magnetic properties of Co-Zn ferrite thin films prepared by a sol-gel process (Sol-gel 법에 의한 Co-Zn Ferrite 박막의 제호와 자기 특성에 관한 연구)

  • 김철성;안성용;이승화;양계준;류연국
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.168-172
    • /
    • 2001
  • Co-Zn ferrite thin films grown on thermally oxidized silicon wafers were fabricated by a sol-gel method. Magnetic and structural properties of Co-Zn thin films were investigated by using x-ray diffractometer (XRD), atomic force microscopy (AFM), auger electron spectroscopy (AES) and a vibrating sample magnetometer (VSM). Co-Zn ferrite thin films annealed at 400 $^{\circ}C$ presented have only a single phase spinel structure without any preferred crystallite orientation. Their surface roughness of Co-Zn ferrite thin films was shown as less than 3 nm and the grain size was about 40 nm for annealing temperatures over 600 $^{\circ}C$. A moderate saturation magnetization of Co-Zn ferrite thin films for recording media was obtained in this study and there is no significant difference of their magnetic property with those external fields of parallel and perpendicular to planes of the films. The maximum value of the coercivity was obtained as 1,900 Oe for Co-Zn ferrite thin film annealed at 600 $^{\circ}C$.

  • PDF

Enhanced Low-field Magnetoresistance of La0.7Sr0.3Mn1+dO3-Mn3O4 Composite Films Prepared by ex-situ Solid Phase Crystallization

  • Kang, Young-Min;Kim, Hyo-Jin;Yoo, Sang-Im
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • We report improved low-field magnetoresistance (LFMR) effects of the $La_{0.7}Sr_{0.3}Mn_{1+d}O_3-Mn_3O_4$ composite films with the nominal composition of $La_{0.7}Sr_{0.3}MnO_3$(LSMO)-50 mol% $Mn_3O_4$. The composite films were fabricated by ex-situ solid phase crystallization (SPC) of amorphous films at the annealing temperature region of $900-1100^{\circ}C$ for 2 h in a pure oxygen atmosphere. The amorphous films were deposited on polycrystalline $BaZrO_3$ (poly-BZO) substrates by dc-magnetron sputtering at room temperature. The Curie temperatures ($T_C$) of all composite films were insignificantly altered in the range of 368-372 K. The highest LFMR value of 1.29 % in 0.5 kOe with the maximum dMR/dH value of $37.4%kOe^{-1}$ at 300 K was obtained from 900 nm-thick composite film annealed at $1100^{\circ}C$. The improved LFMR properties of the composite films are attributed to effective spin-dependent scattering at the $La_{0.7}Sr_{0.3}Mn_{1+d}O_3$ grain boundaries sharpened by adjacent chemically compatible $Mn_3O_4$ grains.

Effects of Microstructure on Thermoelectric Properties of $FeSi_2$

  • Park, Joon-Young;Song, Tae-Ho;Lee, Hong-Lim;Pai, Chul-Hoon
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 1996
  • The variation of electrical conductively and Seebeck coefficient of FeSi2 according to the density of the specimen has been observed over the temperature range 50 to $700^{\circ}C$. A conventional pressureless sintering method with various sintering time (0, 0.5, 1, 5h) at $1190^{\circ}C$ and/or various sintering temperatures(1160, 1175, 1190, $1200^{\circ}C$) for 2 h was carried out to prepare $FeSi_2$ specimens having various densities. The relationship between the electrical conductivity and Seebeck coefficient was investigated after two steps of annealing (at $865^{\circ}C$ and then $800^{\circ}C$ for total 160h) and thermoelectric measurement. The electrical conductivity for the specimens showed a typical tendency of semiconductor, the average activation energy of which in the intrinsic region (above $300^{\circ}C$) was observed approximately as 0.452 eV, and increased slightly with density. On the other hand, the specimen of the lower density showed the higher value of Seebeck coefficient in the intrinsic region. As the temperature fell into the non-degenerate region, the highly densified specimen which had relatively little residual metal phase showed the higher value of Seeback coefficient. The power factor of all specimens showed the optimum value at $200^{\circ}C$. However, the power factor of the specimen of the lower density increased again from $400^{\circ}C$ and that of the higher dense specimen increased from $500^{\circ}C$. The power factor was more affected by Seebeck coefficient than electrical conductivity over all temperature range.

  • PDF

Effects of substitution with La and V in $Bi_4Ti_3O_{12}$ thin film by MOCVD using ultrasonic spraying (초음파분무 MOCVD법에 의한 $Bi_4Ti_3O_{12}$ 박막의 제조와 La과 V의 Co-Substitution 에 의한 효과)

  • 김기현;곽병오;이승엽;이진홍;박병옥
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.272-278
    • /
    • 2003
  • $Bi_4Ti_3O_{12}$ (BIT) and $(Bi_{3.25}La_{0.75})(Ti_{2.97}V_{0.03})O_{12}$ (BLTV) thin films were deposited on ITO/glass substrates by metal organic chemical vapor deposition (MOCVD) using ultrasonic spraying. After deposition of the films in oxygen atmosphere for 30 min, the films were heated by rapid thermal annealing (RTA) method, especially direct insertion, at various temperatures. The films were investigated on phase formation temperature, microstructure and electrical properties. From x-ray diffraction (XRD) patterns, the perovskite phase formation temperature of BLTV thin film was about $600^{\circ}C$ which was lower than that of BIT, $650^{\circ}C$. The leakage current of the BLTV thin film was measured to be $1.52\times 10^{-9}$A/$cm^2$ at an applied voltage of 1 V. The remanent polarization (Pr) and coercive field (Ec) values of the BLTV film deposited at $650^{\circ}C$ were $5.6\muC/cm^2$ and 96.5 kV/cm, respectively.

Point defect for $AgGaSe_2$ epilayers grown by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의해 성장된 $AgGaSe_2$ 에피레이어의 점결함 연구)

  • Hong, Myung-Seok;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.98-99
    • /
    • 2008
  • To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) 1.9501 eV - ($8.79\times10^{-4}$ eV/K)$T^2$/(T + 250 K). After the as-grown $AgGaSe_2$ single crystal thin films was annealed in Ag-, Se-, and Ga-atmospheres, the origin of point defects of $AgGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag}$, $V_{Se}$, $Ag_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaSe_2$ single crystal thin films to an optical p-type. Also, we confirmed that Ga in $AgGaSe_2$/GaAs did not form the native defects because Ga in $AgGaSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

Immobilization of Metal lons Using Low-Temperature Calcination Techniques of Spinel-ferrites

  • Yen, Fu-Su;Kao, Hsiao-Chiun;Chen, Wei-Chien
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.106-110
    • /
    • 2001
  • Formation of stoichiometric lithium-, nickel-, and zinc- ferrites by calcining organo-metallic precursors a temperature below 40$0^{\circ}C$ is examined using DTA/TG, and XRD techniques. It attempts to simulate th immobilization of metal ions in industrial liquid influents (waste) through the synthesis of stoichiometric spinel ferrites (SSF). Two steps of the SSF formation during thermal treatments are noted. The transformation of magnetite to ${\gamma}$ - Fe$_2$O$_3$and subsequent first formation of SSF were observed at temperatures ranging from 200 to 45$0^{\circ}C$. Th formation of cation-containing ${\gamma}$-Fe$_2$O$_3$and subsequent second formation of the ferrite occurred at temperature ranges of < 45$0^{\circ}C$ and 500 to $650^{\circ}C$, depending on the heating rate used. Then the temperature range of 200t 45$0^{\circ}C$ is critical to the performance of the technique, because a calcination at the range would lead to a complete formation of SSF, avoiding the occurrences of ${\gamma}$-Fe$_2$O$_3$and ion-containing ${\gamma}$-Fe$_2$O$_3$. If not, so $\alpha$-Fe$_2$O$_3$would occur. And annealing at temperature above $650^{\circ}C$ must be employed by which solid-state reactio of $\alpha$-Fe$_2$O$_3$with metal ions (possibly metal oxides) to form SSF can be conducted.

  • PDF