Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.7.362

HRTEM Study of Precipitation Behavior in Mg-6 wt%Zn-1 wt%Y Alloy  

Baek, Sang-Yeol (Division of Nano Technology, Chungnam National University)
Lee, Kap-Ho (Division of Nano Technology, Chungnam National University)
Kim, Taek-Soo (Korea Institute of Industrial Technology(KITECH))
Publication Information
Korean Journal of Materials Research / v.18, no.7, 2008 , pp. 362-366 More about this Journal
Abstract
The precipitation behavior in Mg-6 wt%Zn-1 wt%Y alloy annealed at different temperatures of $200^{\circ}C$ and $400^{\circ}C$ has been characterized by high resolution transmission electron microscope. When the alloy is annealed at $200^{\circ}C$ for 6 hr, the plate- and the rod-shaped ${\beta}_2 phases are precipitated in the matrix. The orientation relationship of plate-shaped precipitates with the matrix exhibits a [$11{\bar{2}}0]{\beta}_2$ || [$10{\bar{1}}0$]Mg, $(0001){\beta}_2 || (0001)Mg. While the rod-shaped precipitates have two kinds of the orientation relationships with the matrix, i.e. $[11{\bar{2}}0]{\beta}_2||[0001] Mg, $(0001){\beta}_2 Mg and $[11{\bar{2}}0]{\beta}_2||[0001] Mg, $({\bar{1}}106){\beta}_2 Mg. With increasing annealing time at $200^{\circ}C$ the ${\beta}_1 phases are also precipitated in the matrix and the orientation relationship exhibits a $[010]{\beta}_1 || [0001]Mg, $(603){\beta}_1 || ($01{\bar{1}}0$)Mg between the ${\beta}_1 precipitate and the matrix. The icosahedral phases are precipitated in the alloy annealed at $400^{\circ}C$ and exhibit a $[I2]_I$ || [0001]Mg relationship with the matrix.
Keywords
Mg-Zn-Y alloy; precipitation; orientation relationship; high resolution transmission electron microscopy;
Citations & Related Records

Times Cited By SCOPUS : 2
연도 인용수 순위
1 A. Singh and A. P. Tasi, Scripta Metall., 57, 941 (2007)   DOI   ScienceOn
2 I. J. Polmear, Mater. Sci. Technol., 10, 1 (1994)   DOI   ScienceOn
3 D. H. Bae, S. H. Kim, D. H. Kim and W. T. Kim, Acta Mater., 50, 2343 (2002)   DOI   ScienceOn
4 J. S. Chun and J. B. Bryne, J. Mater. Sci., 4, 851 (1969)   DOI
5 J. Gallot and R. Graf, Comptes. Rendus. Acda. Sci., 261B, 728 (1965)
6 X. Gao and J. F. Nie, Scripta Metall., 56, 645 (2007)   DOI   ScienceOn
7 A. Singh, M. Nakamura, M. Watanabe, A. Kato and A. P. Tasi, Scripta Mater., 49, 417 (2003)   DOI   ScienceOn
8 L. L. Rokhlin and A. A. Oreshkina, Fiz. Metal. Metalloved., 66, 559 (1988)
9 L. Y. Wei, G. L. Dunlop and H. Westengen, Metall. Mater. Trans., A26, 1705 (1995)   DOI
10 Y. Komura and K. Tokunaaga, Acta Cryst., 36B, 1548 (1980)
11 I. J. Kim, D. H. Bae and D. H. Kim, Mater. Sci. Eng., A359, 313 (2003)   DOI   ScienceOn
12 J. Gallot, K. Ral, R. Graf and A. Guinier, Comptes. Rendus. Acda. Sci., 258B, 2818 (1964)
13 L. Sturkey and J. B. Clark, J. Inst. Metals, 88, 177 (1959-60)
14 Q. B. Yang and K. H. Kuo, Acta Cryst., A43, 787 (1987)   DOI
15 J. B. Clark, Acta Metall., 13, 1281(1965)   DOI   ScienceOn
16 Z. P. Luo, S. Q. Zhang, Y. L. Tang and D. S. Zhao, Scripta Metall. Mater., 32, 1411 (1994)   DOI   ScienceOn
17 A. Singh, M. Watanabe, A. Kato and A. P. Tsai, Mater. Sci. Eng., A385, 382 (2004)
18 E. O. Hall, J. Inst. Metals, 96, 21 (1968)
19 M. X. Zhang and P. M. Kelly, Scripta Mater., 48, 379 (2003)   DOI   ScienceOn
20 J. F. Nie, Scripta Mater., 48, 1009 (2003)   DOI   ScienceOn