Browse > Article
http://dx.doi.org/10.4283/JMAG.2012.17.4.265

Enhanced Low-field Magnetoresistance of La0.7Sr0.3Mn1+dO3-Mn3O4 Composite Films Prepared by ex-situ Solid Phase Crystallization  

Kang, Young-Min (Department of Materials Science and Engineering, Seoul National University, Research Institute of Advanced Materials (RIAM))
Kim, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University, Research Institute of Advanced Materials (RIAM))
Yoo, Sang-Im (Department of Materials Science and Engineering, Seoul National University, Research Institute of Advanced Materials (RIAM))
Publication Information
Abstract
We report improved low-field magnetoresistance (LFMR) effects of the $La_{0.7}Sr_{0.3}Mn_{1+d}O_3-Mn_3O_4$ composite films with the nominal composition of $La_{0.7}Sr_{0.3}MnO_3$(LSMO)-50 mol% $Mn_3O_4$. The composite films were fabricated by ex-situ solid phase crystallization (SPC) of amorphous films at the annealing temperature region of $900-1100^{\circ}C$ for 2 h in a pure oxygen atmosphere. The amorphous films were deposited on polycrystalline $BaZrO_3$ (poly-BZO) substrates by dc-magnetron sputtering at room temperature. The Curie temperatures ($T_C$) of all composite films were insignificantly altered in the range of 368-372 K. The highest LFMR value of 1.29 % in 0.5 kOe with the maximum dMR/dH value of $37.4%kOe^{-1}$ at 300 K was obtained from 900 nm-thick composite film annealed at $1100^{\circ}C$. The improved LFMR properties of the composite films are attributed to effective spin-dependent scattering at the $La_{0.7}Sr_{0.3}Mn_{1+d}O_3$ grain boundaries sharpened by adjacent chemically compatible $Mn_3O_4$ grains.
Keywords
low-field magnetoresistance (LFMR); $La_{0.7}Sr_{0.3}MnO_3$ (LSMO)-$Mn_3O_4$ composite film; dc-magnetron sputtering; solid phase crystallization; spin-dependent scattering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).   DOI
2 A. M. Haghiri-Gosnet and J. P. Renard, J. Phys. D 36, R127 (2003).   DOI   ScienceOn
3 W. Prellier, P. Lecoeur, and B. Mercey, J. Phys.: Condens. Matter. 13, R915 (2001).   DOI   ScienceOn
4 R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).   DOI   ScienceOn
5 S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, L. H. Chen, Science 264, 413 (1994).   DOI   ScienceOn
6 H. Gencer, M. Pektas, Y. Babur, V. S. Kolat, T. Izgi, and S. Ataly, J. Magnetics 17, 176 (2012).   DOI   ScienceOn
7 H. Y. Hwang, S.-W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996).   DOI   ScienceOn
8 J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett. 81, 1953 (1998).   DOI   ScienceOn
9 R. Mahesh, R. Mahendiran, A. K. Raychaudhuri, and C. N. R. Rao, Appl. Phys. Lett. 68, 2291 (1996).   DOI
10 A. Gupta, G. Q. Gong, Gang Xiao, P. R. Duncombe, P. Lecoeur, P. Trouilloud, Y. Y. Wang V. P. Dravid, and J. Z. Sun, Phys. Rev. B 54, R15629 (1996).   DOI   ScienceOn
11 X. S. Yang, Y. Yang. W. He, C. H. Cheng, and Y. Zhao, J. Phys. D: Appl. Phys. 41, 115009 (2008).   DOI   ScienceOn
12 A. Gaur and G. D. Varma, J. Alloys Compd. 453, 423 (2008).   DOI   ScienceOn
13 Y.-M. Kang, H.-J. Kim, and S.-I. Yoo, Appl. Phys. Lett. 95, 052510 (2009).   DOI   ScienceOn
14 D. K. Petrov, L. Krusin-Elbaum, J. Z. Sun, C. Feild, and P. R. Duncombe, Appl. Phys. Lett. 75, 995 (1999).   DOI
15 C. Xionga, H. Hu, Y. Xiong, Z. Zhang, H. Pi, X. Wu, L. Li, F. Wei, and C. Zheng, J. Alloys Compd. 479, 357 (2009).   DOI   ScienceOn
16 J. Kumar, R. K. Singh, H. K. Singh, P. K. Siwach, R. Singh, and O. N. Srivastava, J. Alloys Compd. 455, 289 (2008).   DOI   ScienceOn
17 P. Kameli, H. Salamati, and M. Hakimi, J. Alloys Compd. 463, 18 (2008).   DOI   ScienceOn
18 H.-J. Kim and S.-I. Yoo, J. Alloys Compd. 521, 30 (2012).   DOI   ScienceOn
19 S. Valencia. O. Castano, J. Fontcuberta, B. Martinez, and L. Balcells, J. Appl. Phys. 94, 2524 (2003).   DOI   ScienceOn
20 Z. Bi, E. Weal, H. Luo, A. Chen, J. L. MacManus-Driscoll, Q. Jia, and H. Wang, J. Appl. Phys. 109, 054302 (2011).   DOI   ScienceOn
21 L. Yan, L. B. Kong, T. Yang. W. C. Goh, C. Y. Tan, C. K. Ong, M. A. Rahman, T. Osipowicz, and M. Q. Ren, J. Appl. Phys. 96, 1568 (2004).   DOI   ScienceOn
22 S. A. Koster, V. Moshnyaga, K. Samwer, O. I. Lebedev, G. van Tendeloo, O. Shapoval, and A. Belenchuk, Appl. Phys. Lett. 81, 1648 (2002).   DOI   ScienceOn
23 A. Chen, Z. Bi, C. F. Tsai, J. H. Lee, Q. Su, X. Zhang, Q. Jia, J. L. MacManus-Driscoll, and H. Wang, Adv. Funct. Mater. 21, 2423 (2011).   DOI   ScienceOn
24 Y.-M. Kang, A. N. Ulyanov, S. Y. Lee, and S.-I. Yoo, Met. Mater. Int. 17, 1045 (2011)   DOI
25 I.-B. Shim, B.-W. Lee, and C. S. Kim, J. Magn. Magn. Mater. 239, 279 (2002).   DOI   ScienceOn
26 K.-K. Choi, T. Taniyama, and Y. Yamazaki, J. Appl. Phys. 90, 6145 (2001).   DOI   ScienceOn
27 A. S Borovick-Ramanov and M. P. Orlova, Sov. Phys. JETP 5, 1023 (1957).
28 J. A. M. van Roosmalen, P. van Vlaanderen, and E. H. P. Cordfunke, J. Solid State Chem. 114, 516 (1995).   DOI   ScienceOn
29 Y.-M. Kang, S.-H. Wee, S.-I. Baik, S.-G. Min, S.-C. Yu, S.-H. Moon, Y.-W. Kim, and S.-I. Yoo, J. Appl. Phys. 97, 10A319 (2005).   DOI
30 Y.-M. Kang, A. N. Ulyanov, and S.-I. Yoo, Phys. Stat. Sol. A 204, 763 (2007).   DOI   ScienceOn