DOI QR코드

DOI QR Code

HRTEM Study of Precipitation Behavior in Mg-6 wt%Zn-1 wt%Y Alloy

고분해능 전자현미경을 이용한 Mg-6 wt%Zn-1 wt%Y 합금의 석출거동에 관한 연구

  • Baek, Sang-Yeol (Division of Nano Technology, Chungnam National University) ;
  • Lee, Kap-Ho (Division of Nano Technology, Chungnam National University) ;
  • Kim, Taek-Soo (Korea Institute of Industrial Technology(KITECH))
  • 백상열 (충남대학교 공과대학 나노공학부) ;
  • 이갑호 (충남대학교 공과대학 나노공학부) ;
  • 김택수 (한국생산기술연구원 신소재본부)
  • Published : 2008.07.27

Abstract

The precipitation behavior in Mg-6 wt%Zn-1 wt%Y alloy annealed at different temperatures of $200^{\circ}C$ and $400^{\circ}C$ has been characterized by high resolution transmission electron microscope. When the alloy is annealed at $200^{\circ}C$ for 6 hr, the plate- and the rod-shaped ${\beta}_2'$ phases are precipitated in the matrix. The orientation relationship of plate-shaped precipitates with the matrix exhibits a [$11{\bar{2}}0]{\beta}_2$ || [$10{\bar{1}}0$]Mg, $(0001){\beta}_2'$ || (0001)Mg. While the rod-shaped precipitates have two kinds of the orientation relationships with the matrix, i.e. $[11{\bar{2}}0]{\beta}_2'$||[0001] Mg, $(0001){\beta}_2'||(11{\bar{2}}0)$ Mg and $[11{\bar{2}}0]{\beta}_2'$||[0001] Mg, $({\bar{1}}106){\beta}_2'||(10{\bar{1}}0)$ Mg. With increasing annealing time at $200^{\circ}C$ the ${\beta}_1'$ phases are also precipitated in the matrix and the orientation relationship exhibits a $[010]{\beta}_1'$ || [0001]Mg, $(603){\beta}_1'$ || ($01{\bar{1}}0$)Mg between the ${\beta}_1'$ precipitate and the matrix. The icosahedral phases are precipitated in the alloy annealed at $400^{\circ}C$ and exhibit a $[I2]_I$ || [0001]Mg relationship with the matrix.

Keywords

References

  1. M. X. Zhang and P. M. Kelly, Scripta Mater., 48, 379 (2003) https://doi.org/10.1016/S1359-6462(02)00457-8
  2. J. F. Nie, Scripta Mater., 48, 1009 (2003) https://doi.org/10.1016/S1359-6462(02)00497-9
  3. E. O. Hall, J. Inst. Metals, 96, 21 (1968)
  4. J. B. Clark, Acta Metall., 13, 1281(1965) https://doi.org/10.1016/0001-6160(65)90039-8
  5. I. J. Polmear, Mater. Sci. Technol., 10, 1 (1994) https://doi.org/10.1179/mst.1994.10.1.1
  6. Z. P. Luo, S. Q. Zhang, Y. L. Tang and D. S. Zhao, Scripta Metall. Mater., 32, 1411 (1994) https://doi.org/10.1016/0956-716X(95)00180-4
  7. D. H. Bae, S. H. Kim, D. H. Kim and W. T. Kim, Acta Mater., 50, 2343 (2002) https://doi.org/10.1016/S1359-6454(02)00067-8
  8. A. Singh, M. Nakamura, M. Watanabe, A. Kato and A. P. Tasi, Scripta Mater., 49, 417 (2003) https://doi.org/10.1016/S1359-6462(03)00305-1
  9. L. L. Rokhlin and A. A. Oreshkina, Fiz. Metal. Metalloved., 66, 559 (1988)
  10. J. S. Chun and J. B. Bryne, J. Mater. Sci., 4, 851 (1969) https://doi.org/10.1007/BF00549777
  11. L. Y. Wei, G. L. Dunlop and H. Westengen, Metall. Mater. Trans., A26, 1705 (1995) https://doi.org/10.1007/BF02670757
  12. Y. Komura and K. Tokunaaga, Acta Cryst., 36B, 1548 (1980)
  13. J. Gallot and R. Graf, Comptes. Rendus. Acda. Sci., 261B, 728 (1965)
  14. J. Gallot, K. Ral, R. Graf and A. Guinier, Comptes. Rendus. Acda. Sci., 258B, 2818 (1964)
  15. L. Sturkey and J. B. Clark, J. Inst. Metals, 88, 177 (1959-60)
  16. X. Gao and J. F. Nie, Scripta Metall., 56, 645 (2007) https://doi.org/10.1016/j.scriptamat.2007.01.006
  17. Q. B. Yang and K. H. Kuo, Acta Cryst., A43, 787 (1987) https://doi.org/10.1107/S0108767387098519
  18. A. Singh and A. P. Tasi, Scripta Metall., 57, 941 (2007) https://doi.org/10.1016/j.scriptamat.2007.07.028
  19. I. J. Kim, D. H. Bae and D. H. Kim, Mater. Sci. Eng., A359, 313 (2003) https://doi.org/10.1016/S0921-5093(03)00352-6
  20. A. Singh, M. Watanabe, A. Kato and A. P. Tsai, Mater. Sci. Eng., A385, 382 (2004)

Cited by

  1. Lattice Correspondence and Growth Structures of Monoclinic Mg4Zn7 Phase Growing on an Icosahedral Quasicrystal vol.8, pp.5, 2018, https://doi.org/10.3390/cryst8050194
  2. Structural characterization of Laves-phase MgZn2 precipitated in Mg-Zn-Y alloy vol.16, pp.2, 2010, https://doi.org/10.1007/s12540-010-0403-2