• Title/Summary/Keyword: annealing conditions

Search Result 697, Processing Time 0.031 seconds

Molecular dynamics simulations of the coupled effects of strain and temperature on displacement cascades in α-zirconium

  • Sahi, Qurat-ul-ain;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.907-914
    • /
    • 2018
  • In this article, we conducted molecular dynamics simulations to investigate the effect of applied strain and temperature on irradiation-induced damage in alpha-zirconium. Cascade simulations were performed with primary knock-on atom energies ranging between 1 and 20 KeV, hydrostatic and uniaxial strain values ranging from -2% (compression) to 2% (tensile), and temperatures ranging from 100 to 1000 K. Results demonstrated that the number of defects increased when the displacement cascade proceeded under tensile uniaxial hydrostatic strain. In contrast, compressive strain states tended to decrease the defect production rate as compared with the reference no-strain condition. The proportions of vacancy and interstitial clustering increased by approximately 45% and 55% and 25% and 32% for 2% hydrostatic and uniaxial strain systems, respectively, as compared with the unstrained system, whereas both strain fields resulted in a 15-30% decrease in vacancy and interstitial clustering under compressive conditions. Tensile strains, specifically hydrostatic strain, tended to produce larger sized vacancy and interstitial clusters, whereas compressive strain systems did not significantly affect the size of defect clusters as compared with the reference no-strain condition. The influence of the strain system on radiation damage became more significant at lower temperatures because of less annealing than in higher temperature systems.

Electrical characteristics of poly-Si NVM by using the MIC as the active layer

  • Cho, Jae-Hyun;Nguyen, Thanh Nga;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.151-151
    • /
    • 2010
  • In this paper, the electrically properties of nonvolatile memory (NVM) using multi-stacks gate insulators of oxide-nitride-oxynitride (ONOn) and active layer of the low temperature polycrystalline silicon (LTPS) were investigated. From hydrogenated amorphous silicon (a-Si:H), the LTPS thin films with high crystalline fraction of 96% and low surface's roughness of 1.28 nm were fabricated by the metal induced crystallization (MIC) with annealing conditions of $650^{\circ}C$ for 5 hours on glass substrates. The LTPS thin film transistor (TFT) or the NVM obtains a field effect mobility of ($\mu_{FE}$) $10\;cm^2/V{\cdot}s$, threshold voltage ($V_{TH}$) of -3.5V. The results demonstrated that the NVM has a memory window of 1.6 V with a programming and erasing (P/E) voltage of -14 V and 14 V in 1 ms. Moreover, retention properties of the memory was determined exceed 80% after 10 years. Therefore, the LTPS fabricated by the MIC became a potential material for NVM application which employed for the system integration of the panel display.

  • PDF

Stochastic Estimation of Acoustic Impedance of Glass-Reinforced Epoxy Coating

  • Kim, Nohyu;Nah, Hwan-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.119-127
    • /
    • 2014
  • An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

Microstructure and Mechanical Properties of a Cu-Fe-P Copper Alloy Sheet Processed by Differential Speed Rolling (이주속압연된 Cu-Fe-P 동합금 판재의 조직 및 기계적 성질)

  • Lee, Seong-Hee;Lim, Jung-Youn;Utsunomiya, Hiroshi;Euh, Kwangjun;Han, Seung-Zeon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.942-950
    • /
    • 2010
  • The microstructure and mechanical properties of a Cu-Fe-P copper alloy processed by differential speed rolling (DSR) were investigated in detail. The copper alloy, with a thickness of 3 mm, was rolled to 50% reduction at ambient temperature without lubrication with a differential speed ratio of 2.0:1 and then annealed for 0.5h at various temperatures ranging from 100 to $800^{\circ}C$. Conventional rolling was performed under the same rolling conditions for comparison. The shear strain introduced by the conventional rolling process showed positive values at the positions of the upper roll side and negative values at the positions of the lower roll side. However, the result was zero or positive values at all positions for samples rolled by DSR. The effects of DSR on the microstructure and mechanical properties of the as-rolled and subsequently annealed samples are discussed.

Photoelectrochemical performance of anodized nanoporous iron oxide based on annealing conditions (양극산화로 제조된 다공성 나노구조 철 산화막의 열처리 조건에 따른 광전기화학적 성질)

  • Dongheon Jeong;JeongEun Yoo;Kiyoung Lee
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.4
    • /
    • pp.265-272
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is one of the promising methods for hydrogen production by solar energy. Iron oxide has been effectively investigated as a photoelectrode material for PEC water splitting due to its intrinsic property such as short minority carrier diffusion length. However, iron oxide has a low PEC efficiency owing to a high recombination rate between photoexcited electrons and holes. In this study, we synthesized nanoporous structured iron oxide by anodization to overcome the drawbacks and to increase surface area. The anodized iron oxide was annealed in Ar atmosphere with different purging times. In conclusion, the highest current density of 0.032 mA/cm2 at 1.23 V vs. RHE was obtained with 60 s of pursing for iron oxide(Fe-60), which was 3 times higher in photocurrent density compared to iron oxide annealed with 600 s of pursing(Fe-600). The resistances and donor densities were also evaluated for all the anodized iron oxide by electrochemical impedance spectra and Mott-Schottky plot analysis.

Effects of Chemical Etching with Sulfuric Acid on Glass Surface

  • Jang, H.K.;Chung, Y.L.;S.W.Whangbo;C.N.Whang;Lee, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.165-165
    • /
    • 2000
  • Glass slides were chemically etched with sulfuric acid using five different methods. we investigated the effects of the chemical etching conditions on such properties as chemical composition, surface roughness, and the thermal stability of the glass. Sodium and carbon atoms in the surface of the glass are effectively eliminated by chemical etching with sulfuric acid. The glass slides were boiled for 30 min in 95% sulfuric acid and were depth profiled at room temperature with X-ray photoelectron spectroscopy (XPS), the Na ls signal was not detected in the detection limit of XPS. Surface morphology of the glass was very different depending on the concentration of sulfuric acid. The surface of the glass etched with 50% sulfuric acid was rougher than that of glass etched with 95% sulfuric acid. The sodium concentration of the glass boiled for 30 min in 95% sulfuric acid was nearly zero at the glass surface, and the sodium composition changed very little with annealing temperatures up to 35$0^{\circ}C$ in a vacuum environment. However the sulfur concentration at the glass surface due to the sulfuric acid increased with increasing temperature.

  • PDF

A Study on Optimal Placement of Underwater Target Position Tracking System considering Marine Environment (해양환경을 고려한 수중기동표적 위치추적체계 최적배치에 관한 연구)

  • Taehyeong Kim;Seongyong Kim;Minsu Han;Kyungjun Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.400-408
    • /
    • 2023
  • The tracking accuracy of buoy-based LBL(Long Base Line) systems can be significantly influenced by sea environmental conditions. Particularly, the position of buoys that may have drifted due to sea currents. Therefore it is necessary to predict and optimize the drifted-buoy positions in the deploying step. This research introduces a free-drift simulation model using ocean data from the European CMEMS. The simulation model's predictions are validated by comparing them to actual sea buoy drift tracks, showing a substantial match in averaged drift speed and direction. Using this drift model, we optimize the initial buoy layout and compare the tracking performance between the center hexagonal layout and close track layout. Our results verify that the optimized layout achieves lower tracking errors compared to the other two layout.

Thermal Gradient Change of T-shaped Mg Alloy Specimen Exposed to Electropulses (전류펄스 인가된 T자형 Mg 합금 시편의 온도 구배 변화)

  • J.H. Song;D.J. Park;S. Cheon;J. Yu;S.H. Lee;T. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.4
    • /
    • pp.285-290
    • /
    • 2024
  • Electropulsing treatment (EPT) has been developed as an alternative to furnace heat treatment (FHT) to exploit its engineering advantages in rapidly annealing metallic materials. Conventionally, the separation of thermal and athermal effects of EPT has been attempted by comparing EPT and FHT specimens processed under identical temperature and duration. However, this method inherently introduces experimental and measurement errors. This study proposes a novel approach to distinguish the thermal and athermal effects of EPT-processed metals using T-shaped specimen with two observation points, namely 'C' and 'D'. For verification, the thermal gradient of T-shaped Mg alloys was examined under various EPT conditions. The points C exhibited higher temperatures compared to those at points D at a given electric current density, because only the former received both thermal and athermal effects. It was confirmed from twelve specimens that the point C at an electric current density of 65 A·mm-2 and point D at 70 A·mm-2 exhibited similar temperatures. This developed method is expected to reduce measurement errors in distinguishing thermal and athermal effects, thus providing a deeper understanding of their quantitative contributions in future studies.

Fabrication of Artificial Sea Urchin Structure for Light Harvesting Device Applications

  • Yeo, Chan-Il;Kwon, Ji-Hye;Kim, Joon-Beom;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.380-381
    • /
    • 2012
  • Bioinspired sea urchin-like structures were fabricated on silicon by inductively coupled plasma (ICP) etching using lens-like shape hexagonally patterned photoresist (PR) patterns and subsequent metal-assisted chemical etching (MaCE) [1]. The lens-like shape PR patterns with a diameter of 2 ${\mu}m$ were formed by conventional lithography method followed by thermal reflow process of PR patterns on a hotplate at $170^{\circ}C$ for 40 s. ICP etching process was carried out in an SF6 plasma ambient using an optimum etching conditions such as radio-frequency power of 50 W, ICP power of 25 W, SF6 flow rate of 30 sccm, process pressure of 10 mTorr, and etching time of 150 s in order to produce micron structure with tapered etch profile. 15 nm thick Ag film was evaporated on the samples using e-beam evaporator with a deposition rate of 0.05 nm/s. To form Ag nanoparticles (NPs), the samples were thermally treated (thermally dewetted) in a rapid thermal annealing system at $500^{\circ}C$ for 1 min in a nitrogen environment. The Ag thickness and thermal dewetting conditions were carefully chosen to obtain isolated Ag NPs. To fabricate needle-like nanostructures on both the micron structure (i.e., sea urchin-like structures) and flat surface of silicon, MaCE process, which is based on the strong catalytic activity of metal, was performed in a chemical etchant (HNO3: HF: H2O = 4: 1: 20) using Ag NPs at room temperature for 1 min. Finally, the residual Ag NPs were removed by immersion in a HNO3 solution. The fabricated structures after each process steps are shown in figure 1. It is well-known that the hierarchical micro- and nanostructures have efficient light harvesting properties [2-3]. Therefore, this fabrication technique for production of sea urchin-like structures is applicable to improve the performance of light harvesting devices.

  • PDF

A Study of Optium Condition of RAPD for the Analysis of Genetic Characteristics by Autumn Leaf Color of Zelkova serrata (느티나무(Zelkova serrata)단풍의 유전적 특성분석을 위한 RAPD 적정 조건 구명에 관한 연구)

  • Choi, Byoung Kon;Bang, Kwang Ja
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.94-99
    • /
    • 2004
  • This study was carried out to find out what is the optimum conditions for RAPD of Zelkova serata. We changes the factors what affect to PCR band patterns, as a result, we established the optimum conditions as follows; template DNA 100mg, Primer 0.25uM, dNTP 100mM, Taq polymerase 1.0u, and total reaction volume was filled up to 10uL with distilled water. As the amount of primers went higher, PCR reaction rates were lowered. This reason was cause by exhaustion of primers during initial reaction. The amount of dNTP didn't showed noticable differtations between the range, but the optimum amount was 100mM for efficiency. Taq polymerase 1.0 unit was the best in the range. As the concentration of polymerase were increased, many non-specific bands were appeared, In primer selection, most Openron Random Primers are amplified in this experiment. The primers GC contents were 60, and set A, B, C, D, E, X were tested. Thermal cycler(ASTEC PC808, Japan) condition was, $95^{\circ}C$, 5min, initial denaturation, $94^{\circ}C$, 20sec, denaturation, $37^{\circ}C$, 40sec, annealing, $72^{\circ}C$, 1min, extention, 45cycle repeated and final extention $72^{\circ}C$10min.