Browse > Article
http://dx.doi.org/10.1016/j.net.2018.04.013

Molecular dynamics simulations of the coupled effects of strain and temperature on displacement cascades in α-zirconium  

Sahi, Qurat-ul-ain (Department of Nuclear Engineering, Hanyang University)
Kim, Yong-Soo (Department of Nuclear Engineering, Hanyang University)
Publication Information
Nuclear Engineering and Technology / v.50, no.6, 2018 , pp. 907-914 More about this Journal
Abstract
In this article, we conducted molecular dynamics simulations to investigate the effect of applied strain and temperature on irradiation-induced damage in alpha-zirconium. Cascade simulations were performed with primary knock-on atom energies ranging between 1 and 20 KeV, hydrostatic and uniaxial strain values ranging from -2% (compression) to 2% (tensile), and temperatures ranging from 100 to 1000 K. Results demonstrated that the number of defects increased when the displacement cascade proceeded under tensile uniaxial hydrostatic strain. In contrast, compressive strain states tended to decrease the defect production rate as compared with the reference no-strain condition. The proportions of vacancy and interstitial clustering increased by approximately 45% and 55% and 25% and 32% for 2% hydrostatic and uniaxial strain systems, respectively, as compared with the unstrained system, whereas both strain fields resulted in a 15-30% decrease in vacancy and interstitial clustering under compressive conditions. Tensile strains, specifically hydrostatic strain, tended to produce larger sized vacancy and interstitial clusters, whereas compressive strain systems did not significantly affect the size of defect clusters as compared with the reference no-strain condition. The influence of the strain system on radiation damage became more significant at lower temperatures because of less annealing than in higher temperature systems.
Keywords
Defect Clusters; Displacement Cascade; Molecular Dynamics; Primary Defect Formation; Strain Effects; Temperature Effects;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Chen, B. Liu, L. Lin, G. Jiao, Microstructural development and helium bubble formation in Cu/W (Re) nanometer multilayer films irradiated by He+ ion, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 354 (2015) 244-248.   DOI
2 R. Hengstler-Eger, P. Baldo, L. Beck, J. Dorner, K. Ertl, P. Hoffmann, C. Hugenschmidt, M. Kirk, W. Petry, P. Pikart, Heavy ion irradiation induced dislocation loops in AREVA's M5(R) alloy, J. Nucl. Mater. 423 (2012) 170-182.   DOI
3 Y. Idrees, Z. Yao, M. Kirk, M. Daymond, In situ study of defect accumulation in zirconium under heavy ion irradiation, J. Nucl. Mater. 433 (2013) 95-107.   DOI
4 C. Chow, R. Holt, C. Woo, C. So, Deformation of zirconium irradiated by 4.4 MeV protons at 347 K, J. Nucl. Mater. 328 (2004) 1-10.   DOI
5 J. Kai, W. Huang, H. Chou, The microstructural evolution of zircaloy-4 subjected to proton irradiation, J. Nucl. Mater. 170 (1990) 193-209.   DOI
6 D.J. Bacon, Y.N. Osetsky, R. Stoller, R.E. Voskoboinikov, MD description of damage production in displacement cascades in copper and a-iron, J. Nucl. Mater. 323 (2003) 152-162.   DOI
7 F. Gao, D. Bacon, L. Howe, C. So, Temperature-dependence of defect creation and clustering by displacement cascades in a-zirconium, J. Nucl. Mater. 294 (2001) 288-298.   DOI
8 R. Voskoboinikov, Y.N. Osetsky, D. Bacon, Identification and morphology of point defect clusters created in displacement cascades in a-zirconium, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 242 (2006) 530-533.   DOI
9 G. Ackland, S. Wooding, D. Bacon, Defect, surface and displacement-threshold properties of a-zirconium simulated with a many-body potential, Philos. Mag. A 71 (1995) 553-565.   DOI
10 S. Wooding, L. Howe, F. Gao, A. Calder, D. Bacon, A molecular dynamics study of high-energy displacement cascades in a-zirconium, J. Nucl. Mater. 254 (1998) 191-204.   DOI
11 N. De Diego, A. Serra, D. Bacon, Y.N. Osetsky, On the structure and mobility of point defect clusters in alpha-zirconium: a comparison for two interatomic potential models, Model. Simulat. Mater. Sci. Eng. 19 (2011) 035003.   DOI
12 H. Khater, D. Bacon, Dislocation core structure and dynamics in two atomic models of a-zirconium, Acta Mater. 58 (2010) 2978-2987.   DOI
13 A. Barrow, A. Korinek, M. Daymond, Evaluating zirconiumezirconium hydride interfacial strains by nano-beam electron diffraction, J. Nucl. Mater. 432 (2013) 366-370.   DOI
14 C. Domain, Ab initio modelling of defect properties with substitutional and interstitials elements in steels and Zr alloys, J. Nucl. Mater. 351 (2006) 1-19.   DOI
15 S. Di, Z. Yao, M.R. Daymond, F. Gao, Molecular dynamics simulations of irradiation cascades in alpha-zirconium under macroscopic strain, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 303 (2013) 95-99.   DOI
16 S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19.   DOI
17 M.I. Mendelev, G.J. Ackland, Development of an interatomic potential for the simulation of phase transformations in zirconium, Phil. Mag. Lett. 87 (2007) 349-359.   DOI
18 S. Wooding, D. Bacon, A molecular dynamics study of displacement cascades in a-zirconium, Philos. Mag. A 76 (1997) 1033-1051.   DOI
19 C. Domain, A. Legris, Ab initio atomic-scale determination of point-defect structure in hcp zirconium, Philos. Mag. 85 (2005) 569-575.   DOI
20 J. Biersack, J. Ziegler, Refined universal potentials in atomic collisions, Nucl. Instrum. Meth. Phys. Res. 194 (1982) 93-100.   DOI
21 P.K. Nandi, J. Eapen, Cascade overlap in hcp zirconium: defect accumulation and microstructure evolution with radiation using molecular dynamics simulations, MRS Online Proc. Libr. Arch. 1514 (2013) 37-42.
22 ASTM E521-96, Standard Practice for Neutron Radiation Damage Simulation by Charged-particle Irradiation, American Society of Testing and Materials, Philadelphia, PA, 2009.
23 W. Setyawan, G. Nandipati, K.J. Roche, H.L. Heinisch, B.D. Wirth, R.J. Kurtz, Displacement cascades and defects annealing in tungsten, Part I: defect database from molecular dynamics simulations, J. Nucl. Mater. 462 (2015) 329-337.   DOI
24 N.P. Lazarev, A.S. Bakai, Atomistic simulation of primary damages in Fe, Ni and Zr, J. Supercrit. Fluids 82 (2013) 22-26.   DOI
25 D. Bacon, A. Calder, F. Gao, Defect production due to displacement cascades in metals as revealed by computer simulation, J. Nucl. Mater. 251 (1997) 1-12.   DOI
26 R. Bullough, B. Eyre, R. Perrin, The growth and stability of voids in irradiated metals, Nucl. Appl. Technol. 9 (1970) 346-355.   DOI
27 B. Beeler, M. Asta, P. Hosemann, N. Gronbech-Jensen, Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron, J. Nucl. Mater. 474 (2016) 113-119.   DOI
28 J. Guenole, A. Prakash, E. Bitzek, Influence of intrinsic strain on irradiation induced damage: the role of threshold displacement and surface binding energies, Mater. Des. 111 (2016) 405-413.   DOI
29 G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, 2016.