Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.10.942

Microstructure and Mechanical Properties of a Cu-Fe-P Copper Alloy Sheet Processed by Differential Speed Rolling  

Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University)
Lim, Jung-Youn (Department of Advanced Materials Science and Engineering, Mokpo National University)
Utsunomiya, Hiroshi (Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University)
Euh, Kwangjun (Structural Materials Division, Korea Institute of Materials Science)
Han, Seung-Zeon (Structural Materials Division, Korea Institute of Materials Science)
Publication Information
Korean Journal of Metals and Materials / v.48, no.10, 2010 , pp. 942-950 More about this Journal
Abstract
The microstructure and mechanical properties of a Cu-Fe-P copper alloy processed by differential speed rolling (DSR) were investigated in detail. The copper alloy, with a thickness of 3 mm, was rolled to 50% reduction at ambient temperature without lubrication with a differential speed ratio of 2.0:1 and then annealed for 0.5h at various temperatures ranging from 100 to $800^{\circ}C$. Conventional rolling was performed under the same rolling conditions for comparison. The shear strain introduced by the conventional rolling process showed positive values at the positions of the upper roll side and negative values at the positions of the lower roll side. However, the result was zero or positive values at all positions for samples rolled by DSR. The effects of DSR on the microstructure and mechanical properties of the as-rolled and subsequently annealed samples are discussed.
Keywords
metals; rolling; microstructure; tensile test; annealing;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 C. Y. Lim, S. Z. Han, and S. H. Lee, Met. Mater. Inter. 12, 225 (2006).   DOI   ScienceOn
2 Y. G. Kim, B. C. Hwang, S. H. Lee, C. W. Lee, and D. H. Shin, J. Kor. Inst. Met. & Mater. 46, 545 (2008).
3 N. Takata, S. H. Lee, and N. Tsuji, Mater. Lett. 63, 1757 (2009).   DOI   ScienceOn
4 T. Kamijo, S. Shinya, and H. Hukutomi, J. Jap. Soc. Tech. Plast. 25(280), 375 (1984).
5 T. Hirohata, S. Masaki, and S. Shima, J. Mater. Proc. Tech. 111, 113 (2001).   DOI   ScienceOn
6 Q. Cui and K. Ohori, Mater. Sci. Tech. 16, 1095 (2000).   DOI
7 K. -H. Kim and D. N. Lee, Acta Mater. 49, 2583 (2001).   DOI   ScienceOn
8 S. H. Lee and D. N. Lee, J. Mech. Sci. 43, 1997 (2001).   DOI   ScienceOn
9 T. Sakai, S. Hamada, and Y. Saito, Scripta Mater. 44, 2569 (2001).   DOI   ScienceOn
10 T. Sakai, K. Yoneda, and Y. Saito, Materials Science Forum 396-402, 309 (2002).
11 K. Koyama and T. Komatsubara, Kinzoku Mater. Sci. Tech. 78, 29 (2008).
12 W. J. Kim, J. D. Park, and W. Y. Kim, J. Alloys and Compounds 460, 289 (2008).   DOI   ScienceOn
13 S. H. Lee, T. Sakai, and D. H. Shin, Mater. Trans. 44, 1382 (2003).   DOI   ScienceOn
14 J. Watanabe, T. Sakai, N. Iwamoto, and H. Utsunomiya, J. Japan Research Institute for Advanced Cu-Base Materials and Technologies 44, 73 (2005).
15 S. H. Lee, D. J. Yoon, T. Sakai, S. H. Kim, and S. Z. Han, J. Kor. Inst. Met. & Mater. 47, 121 (2009).
16 S. H. Lee, D. J. Yoon, K. J. Euh, S. H. Kim, and S. Z. Han, J. Kor. Inst. Met. & Mater. 48, 77 (2010).   DOI   ScienceOn
17 N. Muramatsu, R. Takeuchi, N. Yamagami, T. Sakai, and H. Utsunomiya, J. Japan Research Institute for Advanced Cu-Base Materials and Technologies 48, 73 (2009).
18 T. Sakai, Y. Saito, K. Hirano, and K. Kato, Transaction ISIJ 28, 1028 (1988).   DOI