DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of a Cu-Fe-P Copper Alloy Sheet Processed by Differential Speed Rolling

이주속압연된 Cu-Fe-P 동합금 판재의 조직 및 기계적 성질

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lim, Jung-Youn (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Utsunomiya, Hiroshi (Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University) ;
  • Euh, Kwangjun (Structural Materials Division, Korea Institute of Materials Science) ;
  • Han, Seung-Zeon (Structural Materials Division, Korea Institute of Materials Science)
  • 이성희 (국립목포대학교 신소재공학과) ;
  • 임정윤 (국립목포대학교 신소재공학과) ;
  • 宇都宮裕 (오사카대학교 재료과학과) ;
  • 어광준 (재료연구소 구조재료연구본부) ;
  • 한승전 (재료연구소 구조재료연구본부)
  • Received : 2010.03.27
  • Published : 2010.10.22

Abstract

The microstructure and mechanical properties of a Cu-Fe-P copper alloy processed by differential speed rolling (DSR) were investigated in detail. The copper alloy, with a thickness of 3 mm, was rolled to 50% reduction at ambient temperature without lubrication with a differential speed ratio of 2.0:1 and then annealed for 0.5h at various temperatures ranging from 100 to $800^{\circ}C$. Conventional rolling was performed under the same rolling conditions for comparison. The shear strain introduced by the conventional rolling process showed positive values at the positions of the upper roll side and negative values at the positions of the lower roll side. However, the result was zero or positive values at all positions for samples rolled by DSR. The effects of DSR on the microstructure and mechanical properties of the as-rolled and subsequently annealed samples are discussed.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. C. Y. Lim, S. Z. Han, and S. H. Lee, Met. Mater. Inter. 12, 225 (2006). https://doi.org/10.1007/BF03027535
  2. Y. G. Kim, B. C. Hwang, S. H. Lee, C. W. Lee, and D. H. Shin, J. Kor. Inst. Met. & Mater. 46, 545 (2008).
  3. N. Takata, S. H. Lee, and N. Tsuji, Mater. Lett. 63, 1757 (2009). https://doi.org/10.1016/j.matlet.2009.05.021
  4. T. Kamijo, S. Shinya, and H. Hukutomi, J. Jap. Soc. Tech. Plast. 25(280), 375 (1984).
  5. T. Hirohata, S. Masaki, and S. Shima, J. Mater. Proc. Tech. 111, 113 (2001). https://doi.org/10.1016/S0924-0136(01)00492-7
  6. Q. Cui and K. Ohori, Mater. Sci. Tech. 16, 1095 (2000). https://doi.org/10.1179/026708300101507019
  7. K. -H. Kim and D. N. Lee, Acta Mater. 49, 2583 (2001). https://doi.org/10.1016/S1359-6454(01)00036-2
  8. S. H. Lee and D. N. Lee, J. Mech. Sci. 43, 1997 (2001). https://doi.org/10.1016/S0020-7403(01)00025-X
  9. T. Sakai, S. Hamada, and Y. Saito, Scripta Mater. 44, 2569 (2001). https://doi.org/10.1016/S1359-6462(01)00932-0
  10. T. Sakai, K. Yoneda, and Y. Saito, Materials Science Forum 396-402, 309 (2002).
  11. K. Koyama and T. Komatsubara, Kinzoku Mater. Sci. Tech. 78, 29 (2008).
  12. W. J. Kim, J. D. Park, and W. Y. Kim, J. Alloys and Compounds 460, 289 (2008). https://doi.org/10.1016/j.jallcom.2007.06.050
  13. S. H. Lee, T. Sakai, and D. H. Shin, Mater. Trans. 44, 1382 (2003). https://doi.org/10.2320/matertrans.44.1382
  14. J. Watanabe, T. Sakai, N. Iwamoto, and H. Utsunomiya, J. Japan Research Institute for Advanced Cu-Base Materials and Technologies 44, 73 (2005).
  15. S. H. Lee, D. J. Yoon, T. Sakai, S. H. Kim, and S. Z. Han, J. Kor. Inst. Met. & Mater. 47, 121 (2009).
  16. S. H. Lee, D. J. Yoon, K. J. Euh, S. H. Kim, and S. Z. Han, J. Kor. Inst. Met. & Mater. 48, 77 (2010). https://doi.org/10.3365/KJMM.2010.48.01.077
  17. N. Muramatsu, R. Takeuchi, N. Yamagami, T. Sakai, and H. Utsunomiya, J. Japan Research Institute for Advanced Cu-Base Materials and Technologies 48, 73 (2009).
  18. T. Sakai, Y. Saito, K. Hirano, and K. Kato, Transaction ISIJ 28, 1028 (1988). https://doi.org/10.2355/isijinternational1966.28.1028