• Title/Summary/Keyword: anion-exchange membranes

Search Result 111, Processing Time 0.024 seconds

Synthesis and Properties of Nonfluoro Aminated Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) Anion Exchange Membranes for MCDI Process (막 축전식 탈염용 비불소계 아민화 Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) 음이온교환막의 합성 및 특성)

  • Koo, Jin-Sun;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.564-572
    • /
    • 2012
  • A terpolymer of vinylbenzyl chloride-co-ethyl methacrylate-co-styrene (VBC-EMA-St) was prepared for membrane capacitive deionization (MCDI) by radical polymerization and amination reaction of various amination times. Nonfluoro aminated VBC-EMA-St anion-exchange membranes were characterized by Fourier transform infrared (FTIR) spectrometry. Molecular weight, polydispersity and thermal stability were obtained by gel permeation chromatography (GPC) and thermogravimetric analysis (TGA). The basic properties such as water uptake, ion exchange capacity, electrical resistance and CDI charge-discharge current were measured. The optimal values of ion exchange capacity, water uptake, electrical resistance and molecular weight of synthesized anion-exchange membrane were 1.69 meq/g, 23.7%, 1.61 ${\Omega}{\cdot}cm$ and $3.4{\times}10^4$ g/mol, respectively. As compared with conventional membrane, the pattern of cyclic charge-discharge current of synthesized anion-exchange membrane indicated efficient electrosorption and desorption.

Preparation of Anion-exchange Membrane for Selective Separation of Urea and Ion (요소(Urea) 및 이온의 선택적 분리를 위한 음이온교환막의 제조)

  • Kim, Byoung-Sik;Kim, Min;Heo, Kwang-Beom;Hong, Joo-Hee;Na, Won-Jae;Kim, Jae-Hun
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.303-309
    • /
    • 2006
  • In this study, functional anion-exchange membranes have been prepared and characterized to improve the permeation fluxes of the anion and urea for peritoneum dialysis. They were prepared by UV and radiation graft polymerization methods. The separation-membrane prepared by UV graft polymerization showed the highest grafting degree when HEMA and VBTAC were mixed by 1:2 ratio. However, the grafting degree decreased slightly at compositions above the 1:2 ratio because of the disruption of UV penetration caused by build-up of homopolymer. In the case of photo-initiator, the grafting degree increased up to 0.2 wt%, above which it decreased to a small extent. For the two membranes prepared by radiation graft polymerization, the VBTAC/HEMA membrane showed 96% grafting degree for 6 h reaction time and the GMA membrane showed over 100% grafting degree for 2 h reaction time. Anion-exchange membranes were prepared with 113% grafting degree and with DEA and TEA exchange groups. The DEA membrane showed the conversion degree of 70% in 4 h reaction time while the TEA membrane showed 30% in 2 h reaction time. The prepared anion-exchange membranes were permeable to only anions and urea, but not cations.

Pore-filling anion conducting membranes and their cell performance for a solid alkaline fuel cell (세공충진 음이온 전도성막의 제조 및 이를 이용한 고체알칼리 연료전지 성능 평가)

  • Choi, Youngwoo;Lee, Misoon;Park, Gugon;Yim, Sungdae;Yang, Taehyun;Kim, Changsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • AEM which were used for solid alkaline fuel cell(SAFC) were prepared by photo polymerization in method pore-filling with various quaternary ammonium cationic monomers and crosslinkers without an amination process. Their specific thermal and chemical properties were characterized through various analyses and the physico-chemical properties of the prepared electrolyte membranes such as swelling behavior, ion exchange capacity and ionic conductivity were also investigated in correlation with the electrolyte composition. The polymer electrolyte membranes prepared in this study have a very wide hydroxyl ion conductivity range of 0.01 - 0.45S/cm depending on the composition ratio of the electrolyte monomer and crosslinking agent used for polymerization. However, the hydroxyl ion conductivity of the membranes was relatively higher at the whole cases than those of commercial products such as A201 membrane of Tokuyama. These pore-filling membranes have also excellent properties such as smaller dimensional affects when swollen in solvents, higher mechanical strength, lowest electrolyte crossover through the membranes, and easier preparation process compared of traditional cast membranes. The prepared membranes were then applied to solid alkaline fuel cell and it was found comparable fuel cell performance to A201 membrane of Tokuyama.

  • PDF

Optimum Design of Pore-filled Anion-exchange Membranes for Efficient All-vanadium Redox Flow Batteries (효율적인 전 바나듐 레독스 흐름 전지를 위한 세공충진 음이온교환막의 최적 설계)

  • Kim, Yu-Jin;Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.21-29
    • /
    • 2020
  • In this study, we have established the optimum design condition of pore-filled anion-exchange membrane for all-vanadium redox flow battery (VRFB). From the experimental results, it was proven that the membrane design factors that have the greatest influence on the charge-discharge performance of VRFB are the ion exchange capacity, the porosity of substrate film, and the crosslinking degree. That is, the ohmic loss and the crossover of active materials in VRFB were shown to be determined by the above factors. In addition, two methods, i.e. reducing the ion exchange capacity at low crosslinking degree and increasing the crosslinking degree at high ion exchange capacity, were investigated in the preparation of pore-filled anion-exchange membranes. As a result, it was found that optimizing the crosslinking degree at sufficiently high ion exchange capacity is more desirable to achieving high VRFB charge-discharge performances.

Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method

  • Khan, Muhammad Imran;Wu, Liang;Hossain, Md. Masem;Pan, Jiefeng;Ran, Jin;Mondal, Abhishek N.;Xu, Tongwen
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.365-378
    • /
    • 2015
  • Herein, the preparation of anion exchange membrane (AEM) from brominated poly(2,6-dimethyl 1,6-phenylene oxide) BPPO and dimethylaniline (DMA) by phase-inversion process is reported. Anion exchange membranes (AEMs) are prepared by varying the DMA contents. Prepared AEMs show high thermal stability, water uptake (WR) around 202% to 226%, dimensional change ratios of 1.5% to 2.6% and ion exchange capacities (IECs) of 0.34 mmol/g to 0.82 mmol/g with contact angle of $59.18^{\circ}$ to $65.15^{\circ}$. These membranes are porous in nature as confirmed by SEM observation. The porous property of membranes are important as it could reduce the resistance of transportation of ions across the membranes. They have been used in diffusion dialysis (DD) process for recovery of hydrochloric acid (HCl) from the mixture of HCl and ferrous chloride ($FeCl_2$). Presence of $-N+(CH_3)_2C_6H_5Br^-$ as a functional group in membrane matrix facilitates its applications in DD process. The dialysis coefficients of hydrochloric acid ($U_H$) of the membranes are in range of 0.0016 m/h to 0.14 m/h and the separation factors (S) are in range of 2.09 to 7.32 in the $HCl/FeCl_2$ system at room temperature. The porous membrane structure and presence of amine functional group are responsible for the mechanism of diffusion dialysis (DD).

Problems and Solutions of Anion Exchange Membranes for Anion Exchange Membrane Fuel Cell (AEMFC) (음이온교환막연료전지용 음이온교환막의 문제점과 해결방안)

  • Son, Tae Yang;Kim, Tae Hyun;Kim, Hyoung Juhn;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.489-496
    • /
    • 2018
  • Fuel cells are seen as eco-friendly energy resources that convert chemical energy into electrical energy. However, proton exchange membrane fuel cells (PEMFCs) have problems such as the use of expensive platinum catalysts for the reduction of conductivity under high temperature humidification conditions. Thus, an anion exchange membrane fuel cell (AEMFC) is attracting a great attention. Anion exchange fuel cells use non - Pt catalysts and have the advantage of better efficiency because of the lower activation energy of the oxygen reduction reaction. However, there are various problems to be solved including problems such as the electrode damage and reduction of ion conductivity by being exposed to the carbon dioxide. Therefore, this mini review proposes various solutions for different problems of anion exchange fuel cells through a wide range of research papers.

High Temperature Characteristics of Commercially Available Anion Exchange Membrane for Alkaline Water Electrolysis (알칼리 수전해를 위한 상용 음이온교환막의 고온 특성)

  • JANG, SU-YOEN;RYU, CHEOL-HWI;HWANG, GAB-JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.330-336
    • /
    • 2022
  • In order to evaluate the possibility as a separator in alkaline water electrolysis, the high temperature characteristics were evaluated by measuring the membrane resistance and durability of 5 types of commercial anion exchange membranes in 7 M KOH solution and at 80℃. The membrane resistance of AEM membrane measured in 7 M KOH solution and at 80℃ had a lower value of about 8-24 times compared to the other membranes. The durability of AEM membrane tested with the soaking time in 7 M KOH solution and at 80℃ showed a very good stability and that of FAAM40 and FAAM75-PK showed secondly a good stability. The thermal stability with the soaking time in 7 M KOH solution and at 80℃ of FAAM40 and FAAM75-PK membrane analyzed by thermo-gravimetric analysis showed a good stability compared to the other membranes.

Emergence of MXenes for Fuel Cell (연료전지용 MXenes의 등장)

  • Manoj Karakoti;Sang Yong Nam
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.99-105
    • /
    • 2023
  • Recently, 2D materials greatly impact in the various applications especially in the energy conversion and storage devices. Among the 2D materials, nowadays researchers are showing their propensity towards the MXenes due to their potential structural and physical properties as well as their use in various applications. Recently, MXenes have been used as filler in polymer electrolytes membranes and as catalytic support to increase the performance of fuel cells (FCs). But this review covers only recent progress and application of MXenes in proton and anion exchange membranes for FCs. Also, this review will provide a significant guidance and broad overview for future research in MXenes based polymer electrolyte membrane for FCs.

A Study on the Effect of Different Functional Groups in Anion Exchange Membranes for Vanadium Redox Flow Batteries (바나듐 산화환원 흐름전지를 위한 음이온교환막의 관능기에 따른 특성 연구)

  • Lee, Jae-Myeong;Lee, Mi-Soon;Nahm, Ki-Seok;Jeon, Jae-Deok;Yoon, Young-Gi;Choi, Young-Woo
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.415-424
    • /
    • 2017
  • Commonly cation exchange membranes have been used for vanadium redox flow batteries. However, a severe vanadium ion cross-over causes low energy efficiency. Thus in this study, we prepared 3 different anion exchange membranes to investigate the effect on the membrane properties such as vanadium ion cross-over and long term stability. The base membranes were prepared by an electrolyte pore filling technique using vinyl benzyl chloride (VBC), divinylbenzene (DVB) within a porous polyethylene (PE) substrate. Then 3 different functional amines were introduced into the base membranes, respectively. These resulting membranes were evaluated by physico-chemical properties such as ion exchange capacity, dimensional stability, vanadium ion cross-over and membrane area resistance. Conclusively, TEA-functionalized membrane showed longest term stability than other membranes although all the membranes are similar to coulombic efficiency.